Introduction: Keloids, benign fibroproliferative tumours characterised by excessive fibroblast proliferation and over-deposition of extracellular matrix, pose a therapeutic challenge with high recurrence rates. Betamethasone (diprospan) injection (BI) is one of the most common non-invasive therapies for keloids. Pulsed dye laser (PDL) has the function of closing microvessels, which may become one of the auxiliary treatment methods of BI and may enhance its curative effect. Some studies suggest that the combination of a dual-wavelength dye laser (DWL) and BI may offer superior efficacy. This randomised controlled trial aims to evaluate whether the combined therapy of DWL+BI outperforms BI alone in treating keloids.

Methods And Analysis: This single-centre, parallel positive control, randomised trial evaluates the efficacy and safety of DWL (585 nm PDL+1064 nm neodymium-doped yttrium aluminium garnet) combined with BI for keloid treatment. Enrolling 66 adult patients, participants are randomised into DWL+BI or BI groups in a 1:1 ratio. Over 12 weeks, each group undergoes four treatment sessions, ensuring blinding for outcome assessors. Data collection occurs at multiple time points (4, 12, 24 and 52 weeks), with primary outcomes assessing the Vancouver Scar Scale (VSS) improvement rate 24 weeks after the last intervention. Secondary outcomes include VSS improvement rates, changes in keloid volume, changes in relative perfusion index measured by laser speckle contrast imaging, Patient and Observer Scar Assessment Scale results and patient satisfaction. Safety assessments include vital signs, laboratory tests, pregnancy tests and self-reports of adverse reactions.

Ethics And Dissemination: The results will be presented in peer-reviewed journals and at international conferences. This study is approved by the Ethics Committee of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences.

Trial Registration Number: Chinese Clinical Trial Register (ChiCTR2400080148).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268050PMC
http://dx.doi.org/10.1136/bmjopen-2024-084939DOI Listing

Publication Analysis

Top Keywords

dye laser
12
dual-wavelength dye
8
randomised controlled
8
controlled trial
8
vss improvement
8
laser
4
laser combined
4
combined betamethasone
4
betamethasone injection
4
treatment
4

Similar Publications

Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans.

J Funct Biomater

December 2024

Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.

Photodynamic therapy (PDT) is a minimally invasive treatment that elicits tumor apoptosis using laser light exclusively applied to the tumor site. IR-783, a heptamethine cyanine (HMC) dye, impedes the proliferation of breast cancer cells, even without light. Although studies have investigated the efficacy of IR-783 in cell and animal studies, its efficacy in clinical settings remains unknown.

View Article and Find Full Text PDF

Papulopustular rosacea is an inflammatory subtype of rosacea that can significantly impair patients' quality of life. Available treatment options range from anti-inflammatory topical and oral medications to laser and light therapies. Photodynamic therapy with aminolevulinic acid (ALA-PDT) has emerged as a more recent treatment option for papulopustular rosacea.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is known for its aggressive nature, typically presenting as high-grade tumors that grow and spread quickly in all breast cancer types. Several studies have reported a strong correlation between cancer and microbial infections due to a compromised immune system. The most frequent infection associated with surface malignancies, including breast cancer, is Candidiasis, which is majorly caused by .

View Article and Find Full Text PDF

Direct Additive Detection in Polymer Films via Platinum-Assisted SALDI Mass Spectrometry Imaging.

Mass Spectrom (Tokyo)

December 2024

Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

In this study, we employed platinum-assisted surface-assisted laser desorption/ionization mass spectrometry imaging (MSI) (Pt-SALDI-MSI) to detect and visualize the spatial distribution of antioxidant additives and organic dyes in polystyrene films undergoing photodegradation. In traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), matrix-derived ion peaks often obscure signals from low-molecular-weight analytes. Pt-SALDI-MSI, which utilizes inorganic nanoparticles instead of an organic matrix, enables the interference-free analysis of low-molecular-weight compounds, thereby addressing the limitation of traditional MALDI-MS.

View Article and Find Full Text PDF

In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and H, C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!