Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 μm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ad61a9DOI Listing

Publication Analysis

Top Keywords

bone tissue
16
bioactive biodegradable
8
poly lactic
8
zno microparticles
8
scaffolds
7
zno
7
bone
6
additive manufacturing
4
manufacturing bioactive
4
biodegradable poly
4

Similar Publications

The unique saddle articulation of the trapeziometacarpal joint allows for a wide range of motion necessary for routine function of the thumb. Inherently unstable characteristics of the joint can lead painful instability. In this study, we modified a surgical dorsal ligament reconstruction technique for restoring trapeziometacarpal joint stability.

View Article and Find Full Text PDF

Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Purpose: Studies focused on the effects of sellar and/or perisellar (S/PS) meningiomas on pituitary function are scarce. The primary objective of the present study was to determinate the effects that S/PS meningiomas and their treatments have on pituitary function. Also, we described the clinical characteristics and therapeutic outcomes of the cohort of adult Spanish patients.

View Article and Find Full Text PDF

Airway compromise due to prevertebral soft tissue swelling is a potentially devastating complication following anterior cervical discectomy and fusion (ACDF). However, there are no studies on the postoperative patient posture for enhancing airway patency after ACDF. This study aimed to analyze the effect of neck and mouth postures on airway patency following ACDF and to suggest the beneficial postoperative patient posture for improving airway patency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!