Manganese oxides reduce arsenic (As) toxicity by promoting aqueous-phase As(III) oxidation and immobilization in natural aquatic ecosystems. In anaerobic water-sediment systems, arsenic exists both in a free state in the liquid phase and in an adsorbed state on iron (Fe) minerals. However, the influence of different manganese oxides on the fate of As in this system remains unclear. Therefore, in this study, we constructed an anaerobic microbial As(V) reduction environment and investigated the effects of three different manganese oxides on the fate of both aqueous-phase and goethite-adsorbed As under different pH conditions. The results showed that δ-MnO had a superior As(III) oxidation ability in both aqueous and solid phase due not only to the higher SSA, but also to its wrinkled crystalline morphology, less favorable structure for bacterial reduction, structure conducive to ion exchange, and less interference caused by the formation of secondary Fe-minerals compared to α-MnO and γ-MnO. Regarding aqueous-phase As, δ-MnO, α-MnO, and γ-MnO required an alkaline condition (pH 9) to exhibit their strongest As(III) oxidation and immobilization capability. For goethite-adsorbed As, under microbial-reducing conditions, all manganese oxides had the highest As immobilization effect in neutral pH environments and the strongest As oxidation effect in alkaline environments. This was because at pH 7, Fe(II) and Mn(II) formed hydrated complexes, which was more favorable for As adsorption. At pH 9, the negatively charged state of goethite hindered As adsorption but promoted the adsorption and oxidation of As by the manganese oxides. Our research offers new insights for optimizing As removal from water using various manganese oxides and for controlling the mobilization of As in water-sediment system under different pH conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121988 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China. Electronic address:
Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
A layered lithium-rich manganese-based oxide cathode, containing 3̅ (LiTMO, TM = Mn, Ni, Co) and 2/ (LiMnO) nanodomains, utilizes both transition metals and oxygen redox to yield substantial energy density. However, the inherent heterogeneous nature and distinct nanodomain redox chemistries of layered lithium-rich oxides will inevitably cause pernicious lattice strain and structural displacement, which can hardly be eliminated by conventional doping or coating strategies and result in accelerated performance decay. Herein, we incorporate a strain-inhibiting perovskite phase coherently grown within the layered structure to effectively restrain the displacement and lattice strain during uneven Li-ion extraction.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University Suita Osaka 564-8680 Japan
We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.
View Article and Find Full Text PDFActa Biomater
January 2025
Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China. Electronic address:
In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!