Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tethered Particle Motion (TPM) is a single molecule technique, which consists in tracking the motion of a nanoparticle (NP) immersed in a fluid and tethered to a glass surface by a DNA molecule. The present work addresses the question of the applicability of TPM to fluids which contain crowders at volume fractions ranging from that of the nucleoid of living bacteria (around 30%) up to the jamming threshold (around 66%). In particular, we were interested in determining whether TPM can be used to characterize the compaction of DNA by globular crowders. To this end, extensive Brownian Dynamics simulations were performed with a specifically built coarse-grained model. Analysis of the simulations reveals several effects not observed in dilute media, which impose constraints on the TPM setup. In particular, the Tethered Fluorophore Motion (TFM) technique, which consists in replacing the NP by a much smaller fluorophore, is probably better suited than standard TPM. Moreover, a sample preparation technique which does not involve hydrophilic patches may be required. Finally, the use of a DNA brush may be needed to achieve DNA concentrations close to in vivo ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c03033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!