Precision reaching often requires corrective submovements to obtain the desired goal. Most studies of reaching have focused on single initial movements, and implied the cortical encoding model was the same for all submovements. However, corrective submovements may show different encoding patterns from the initial submovement with distinct patterns of activation across the population. Two rhesus macaques performed a precision center-out-task with small targets. Neural activity from single units in the primary motor cortex and associated behavioral data were recorded to evaluate movement characteristics. Neural population data and individual neuronal firing rates identified with a peak finding algorithm to identify peaks in hand speed were examined for encoding differences between initial and corrective submovements. Individual neurons were fitted with a regression model that included the reach vector, position, and speed to predict firing rate. For both initial and corrective submovements, the largest effect remained movement direction. We observed a large subset changed their preferred direction greater than 45° between initial and corrective submovements. Neuronal depth of modulation also showed considerable variation when adjusted for movement speed. By using principal component analysis, neural trajectories of initial and corrective submovements progressed through different neural subspaces. These findings all suggest that different neural encoding patterns exist for initial and corrective submovements within the cortex. We hypothesize that this variation in how neurons change to encode small, corrective submovements might allow for a larger portion of the neural space being used to encode a greater range of movements with varying amplitudes and levels of precision. Neuronal recordings matched with kinematic behavior were collected in a precision center-out task that often required corrective movements. We reveal large differences in preferred direction and depth of modulation between initial and corrective submovements across the neural population. We then present a model of the neural population describing how these shifts in tuning create different subspaces for signaling initial and corrective movements likely to improve motor precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427045 | PMC |
http://dx.doi.org/10.1152/jn.00269.2023 | DOI Listing |
J Neurophysiol
September 2024
Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States.
Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets.
View Article and Find Full Text PDFJ Neurophysiol
August 2024
Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas, United States.
Precision reaching often requires corrective submovements to obtain the desired goal. Most studies of reaching have focused on single initial movements, and implied the cortical encoding model was the same for all submovements. However, corrective submovements may show different encoding patterns from the initial submovement with distinct patterns of activation across the population.
View Article and Find Full Text PDFJ Neurosci
May 2024
Bioengineering Program, University of Kansas, Lawrence, Kansas 66045
Many initial movements require subsequent corrective movements, but how the motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements.
View Article and Find Full Text PDFUnlabelled: Many initial movements require subsequent corrective movements, but how motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements.
View Article and Find Full Text PDFExp Brain Res
April 2024
Brain and Behaviour Research Group, Research Institute of Sport and Exercise Sciences (RISES), Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 5AF, UK.
In rapid manual aiming, traditional wisdom would have it that two components manifest from feedback-based processes, where error accumulated within the primary submovement can be corrected within the secondary submovement courtesy of online sensory feedback. In some aiming contexts, there are more type 1 submovements (overshooting) compared to types 2 and 3 submovements (undershooting), particularly for more rapid movements. These particular submovements have also been attributed to a mechanical artefact involving movement termination and stabilisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!