Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.adk2936 | DOI Listing |
Adv Sci (Weinh)
December 2024
Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.
Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.
View Article and Find Full Text PDFIEEE Open J Eng Med Biol
July 2024
Scuola Superiore Sant'Anna Pisa 56127 Italy.
The objective of this study was to characterize hemodynamic changes during trans-vascular stimulation of the renal nerve and their dependence on stimulation parameters. We employed a stimulation catheter inserted in the right renal artery under fluoroscopic guidance, in pigs. Systolic, diastolic and pulse blood pressure and heart rate were recorded during stimulations delivered at different intravascular sites along the renal artery or while varying stimulation parameters (amplitude, frequency, and pulse width).
View Article and Find Full Text PDFNat Cardiovasc Res
January 2024
The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
Sci Transl Med
July 2024
University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France.
Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency.
View Article and Find Full Text PDFBioelectron Med
July 2024
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
Background: Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns.
Methods: This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!