Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373512 | PMC |
http://dx.doi.org/10.1093/genetics/iyae107 | DOI Listing |
Anim Microbiome
January 2025
Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia.
Background: In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis.
View Article and Find Full Text PDFTrends Microbiol
January 2025
Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK. Electronic address:
Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings.
View Article and Find Full Text PDFCell Rep
January 2025
Université Côte d'Azur, INSERM, C3M, Nice, France; Équipe labellisée LIGUE Contre le Cancer, Nice, France. Electronic address:
Metabolic reprogramming in both immune and cancer cells plays a crucial role in the antitumor immune response. Recent studies indicate that cancer metabolism not only sustains carcinogenesis and survival via altered signaling but also modulates immune cell function. Metabolic crosstalk within the tumor microenvironment results in nutrient competition and acidosis, thereby hindering immune cell functionality.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Lens-free on-chip microscopy (LFOCM) is a powerful computational imaging technology that combines high-throughput capabilities with cost efficiency. However, in LFOCM, the phase recovered by iterative phase retrieval techniques is generally wrapped into the range of -π to π, necessitating phase unwrapping to recover absolute phase distributions. Moreover, this unwrapping process is prone to errors, particularly in areas with large phase gradients or low spatial sampling, due to the absence of reliable initial guesses.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!