The epithelial-to-mesenchymal transition (EMT) represents a hallmark event in the evolution of lung cancer. This work aims to study a recently described EMT-regulating protein, Tks4, and to explore its potential as a prognostic biomarker in non-small cell lung cancer. In this study, we used CRISPR/Cas9 method to knockout (KO) Tks4 to study its functional roles in invadopodia formation, migration, and regulation of EMT marker expressions and we identified Tks4-interacting proteins. Tks4-KO A549 cells exhibited an EMT-like phenotype characterized by elongated morphology and increased expression of EMT markers. Furthermore, analyses of a large-scale lung cancer database and a patient-derived tissue array data revealed that the Tks4 mRNA level was decreased in more aggressive lung cancer stages. To understand the regulatory role of Tks4 in lung cancer, we performed a Tks4-interactome analysis via Tks4 immunoprecipitation-mass spectrometry on five different cell lines and identified CAPZA1 as a novel Tks4 partner protein. Thus, we propose that the absence of Tks4 leads to disruption of a connectome of multiple proteins and that the resulting undocking and likely mislocalization of signaling molecules impairs actin cytoskeleton rearrangement and activates EMT-like cell fate switches, both of which likely influence disease severity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321040 | PMC |
http://dx.doi.org/10.1091/mbc.E24-03-0103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!