Background: Selenium (Se) is a rare essential element that plays a vital role in the health and performance of animals. By interfering in the production of antioxidant enzymes such as glutathione peroxidase, thioredoxin reductase and methionine sulfoxide, Se plays a role in reducing the effects of oxidative stress and animal performance.

Objectives: This study aimed to investigate the effect of hydroxy-selenomethionine (OH-SeMet) in the diet of broiler breeder and old broiler breeder roosters on productive performance, reproduction and sperm quality parameters.

Methods: For this purpose, 260 broiler breeders of the Ross 308 strain were used in a completely randomized design with four treatments and five replications (13 hens and one rooster in each replication). Experimental treatments included: (1) a basal diet without OH-SeMet (T1:control), (2) a broiler breeder diet without OH-SeMet and a rooster diet containing 0.1 mg/kg OH-SeMet (T2), (3) broiler breeder diet containing 0.1 mg/kg OH-SeMet and rooster diet without OH-SeMet (T3) and (4) broiler breeder and rooster diet contained 0.1 mg/kg OH-SeMet (T4).

Results: The results showed that T3 and T4 treatments improved egg production, egg weight, egg mass and feed conversion ratio (FCR) compared to the control treatment (p < 0.05). The fertility and hatchability percentages of T4 and T2 treatments increased compared to T1 and T3 treatments (p < 0.05). The rate of embryonic losses in T1 was higher than in other treatments. However, grade one chickens were higher in T4 than in other treatments (p < 0.05). Total motility and viability of sperms were significantly higher in T2 and T4 treatments than in T1 and T3 treatments. The sperm abnormality percentage and sperm MDA concentration decreased in T2 and T4 treatments.

Conclusions: Therefore, using OH-SeMet may be a practical approach to help old broiler breeders' production and reproduction performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234897PMC
http://dx.doi.org/10.1002/vms3.1538DOI Listing

Publication Analysis

Top Keywords

broiler breeder
20
diet oh-semet
12
rooster diet
12
01 mg/kg oh-semet
12
broiler breeders
8
breeder diet
8
oh-semet rooster
8
diet 01 mg/kg
8
oh-semet broiler
8
broiler
7

Similar Publications

This objective of this study was to investigate the effects of L-arginine (L-Arg) and L-carnitine (LC) and their mixture in the diet (at lower levels) on sperm quality in aging broiler breeder roosters. Thirty-two broiler breeder roosters of the Arian breed were kept at 50 wk of age after a 12-wk acclimatization period. The birds were divided into four treatments and eight replicates in a completely randomized design.

View Article and Find Full Text PDF

Unlabelled: are Gram-negative, rod-shaped, entero-invasive foodborne bacteria and are frequently detected in chicken houses and facilities of poultry broiler complexes. The objective of this study was to determine the prevalence, critical entry points, and movement pattern of along different stages of a complex. A total of 1,071 environmental samples were collected from 38 production houses (8 pullet, 10 breeder, and 20 broiler), a hatchery, 6 transport trucks, and a processing plant.

View Article and Find Full Text PDF

The objective of this study was to evaluate the impact of feeding broiler breeders hydroxychloride and organic sources of zinc (Zn), copper (Cu), and manganese (Mn) on hatching eggs, embryo, and hatchlings attributes. A total of 408 female (♀) and 48 male (♂) Ross 708 broiler breeder were placed (17 ♀ and 2 ♂/pen). The pens were housed in two rooms (12 pens/room).

View Article and Find Full Text PDF

Semen cryopreservation is essential for preserving genetic resources and enabling artificial insemination in poultry breeding. However, avian sperm is known to experience detrimental changes during the freezing process. Telmisartan, an angiotensin-II receptor antagonist recognized for its antioxidant properties and ability to activate AMP-activated protein kinase (AMPK), was hypothesized to improve post-thaw semen quality by enhancing mitochondrial function and providing antioxidant protection to sperm.

View Article and Find Full Text PDF

Cross-species regulatory network analysis identifies FOXO1 as a driver of ovarian follicular recruitment.

Sci Rep

December 2024

Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.

The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!