Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.e., tP, oI, tI, and oF) and six types of crystallographic space groups (i.e., Pmmm, I222, Pnnm, Ibam, I4/mmm, and Fmmm), which have not been documented in the mesoscale self-assembled systems. It has been revealed that the relative yield of different supercrystal structures is mainly determined by the packing density and deformability of the supercrystals, which are closely related to the tailored concavity of the nanoparticles and is affected by the particle concentration, thus allowing for programmable self-assembly into specific supercrystals through particle shape modulation. The concavity-enabled supercrystal engineering may open a new avenue toward unconventional nanoparticle superstructures with expanded complexity, tunability, and functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403970 | DOI Listing |
J Am Chem Soc
November 2024
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Toehold-mediated strand displacement (TMSD) provides a versatile toolbox for developing DNA digital computing systems. Although different logic circuits with diverse functions have achieved good performance in terms of complexity and scalability, most previous DNA logic circuits perform information processing only at the molecular level, and nonspecific signal leakages are often difficult to avoid. Here, we demonstrate the feasibility of constructing leakless digital computing systems in three-dimensionally ordered colloidal supercrystals.
View Article and Find Full Text PDFAcc Chem Res
November 2024
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
ConspectusAtomically precise metal nanoclusters, serving as an aggregation state of metal atoms, display unique physicochemical properties owing to their ultrasmall sizes with discrete electronic energy levels and strong quantum size effects. Such intriguing properties endow nanoclusters with potential utilization as efficient nanomaterials in catalysis, electron transfer, drug delivery, photothermal conversion, optical control, etc. With the assistance of atomically precise operations and theoretical calculations on metal nanoclusters, significant progress has been accomplished in illustrating their structure-performance correlations at the single-molecule level.
View Article and Find Full Text PDFNat Mater
October 2024
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
Small
November 2024
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.
View Article and Find Full Text PDFAdv Mater
August 2024
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
Mott metal-insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next-generation energy-efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in-situ during a Mott transition in a CaRuO thin film. Machine learning-assisted X-ray nanodiffraction together with cryogenic electron microscopy reveal multi-scale periodic domain formation at and below the film transition temperature (T ≈ 200-250 K) and a separate anisotropic spatial structure at and above T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!