Encapsulated atomic hydrogen in polyhedral oligomeric silsesquioxane (POSS) cages is a promising candidate for spin-based quantum technologies. Key parameters such as spin relaxation times and magnetic interactions with surrounding electron and nuclear spins can be typically probed with advanced electron paramagnetic resonance (EPR) methods. Here we present a detailed pulsed EPR study of the species H@SiOR with R=CH, namely encapsulated atomic hydrogen in the octamethyl POSS derivative. The temperature dependence of the spin-lattice relaxation rate 1/ is analyzed in terms of a Raman process with a Debye temperature of K and a thermally activated process with (552 cm), whereas, the phase memory time shows the typical shortening behaviour at K observed for all methyl-containing derivatives. The hyperfine coupling of the cage Si nuclei is measured by hyperfine sublevel correlation (HYSCORE) spectroscopy and is found to fulfil the so-called "matching condition" at the low-field EPR transition. The potential of this paramagnetic molecule to perform one-qubit quantum operations is probed by room-temperature Rabi oscillations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202400146 | DOI Listing |
ACS Nano
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan.
Edge contacts offer a significant advantage for enhancing the performance of semiconducting transition metal dichalcogenide (TMDC) devices by interfacing with the metallic contacts on the lateral side, which allows the encapsulation of all of the channel material. However, despite intense research, the fabrication of feasible electrical edge contacts to TMDCs to improve device performance remains a great challenge, as interfacial chemical characterization via conventional methods is lacking. A major bottleneck in explicitly understanding the chemical and electronic properties of the edge contact at the metal-two-dimensional (2D) semiconductor interface is the small cross section when characterizing nominally one-dimensional edge contacts.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia.
The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics.
View Article and Find Full Text PDFNat Commun
January 2025
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Analysis and Testing Center, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
CO conversion to CHOH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO reduction to CHOH can only produce CHOH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO electroreduction to syngas, and further photothermal conversion into high-purity CHOH (volume fraction > 97%).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China.
General synthesis and mechanical understanding of type I nano-photosensitizers are of great importance for hypoxia-resistant pyroptosis inducers. Herein, a simple solvothermal treatment is developed to convert non-photosensitive small molecules (hemin) into uniform carbon nanodots (HNCDs) with strong type I photodynamic activity and red fluorescence emission. These HNCDs inherit the single atomic Fe-N center of hemin while creating sp-hybridized carbon surroundings, which synergistically modulated the energy level and electron transfer for converting the type II photodynamic process to type I.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
Atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) possess distinct properties that can present challenges in certain applications. However, integrating these materials to create new composite functional materials has gained significant interest due to their unique characteristics through a range of applications, particularly in catalysis. Considering MOFs as hosts and NCs as guests, several synergistic effects have been observed in composites, particularly in environmental catalytic reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!