Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, InO/InS-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting InO/InS-ZCS photocatalyst was proved to be highly efficient in converting N to NH under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH yield of InO/InS-0.5ZCS reached a significant level of 71.2 μmol g h, which was 10.47 times higher than that of InO (6.8 μmol g h) and 3.22 times higher than that of InO/InS (22.1 μmol g h). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, InS, and InO in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt01605j | DOI Listing |
J Hazard Mater
December 2024
Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
The phytotoxic nature of Ozone (O) has been well documented in a number of scientific literatures during the last few decades. Although there are sufficient studies related to O impact assessment studies on crop plants and tree species, studies pertaining to O effects on medicinal plants are comparatively sparse. During the recent years, the mitigation strategies for management of O stress in plants have also assumed paramount significance.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFBioresour Technol
December 2024
Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:
This study explored a sustainable alternative to the Haber-Bosch process by enhancing production of nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges.
View Article and Find Full Text PDFCell
December 2024
Department of Genetics, University of Georgia, Athens, GA, USA. Electronic address:
Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse cell identities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!