Dietary fiber (DF) cannot be digested and absorbed by the digestive tract, nor can it provide the energy needed to be burned for metabolic activities. Therefore, from the 1950s to the 1980s, DF received little attention in nutrition studies. With in-depth research and developments in global nutrition, people have gradually paid attention to the fact that DF occupies an essential position in the structure of nutrition, and it can ensure the healthy development of human beings. As early as 390 B.C., the ancient Greek physician Hippocrates proposed, "Let your food be your medicine, and your medicine be your food". This concept has been more systematically validated in modern scientific research, with numerous epidemiological studies showing that the dietary intake of DF-rich foods such as whole grains, root vegetables, legumes, and fruits has the potential to regulate the balance of the gut microbiota and thereby prevent diseases. However, the crosstalk between different types of DF and the gut microbiota is quite complex, and the effects on the organism vary. In this paper, we discuss research on DF and the gut microbiota and related diseases, aiming to understand the relationship between all three better and provide a reference basis for the risk reduction of related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3fo05641dDOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
food medicine
8
dietary fiber
8
medicine dietary
4
fiber dietary
4
fiber digested
4
digested absorbed
4
absorbed digestive
4
digestive tract
4
tract provide
4

Similar Publications

Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring.

Adv Sci (Weinh)

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.

Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands.

View Article and Find Full Text PDF

This review paper delves into the role of probiotics and food bioactives in influencing gut health and overall well-being, within the context of probiotics and food bioactives, emphasizing their roles in modulating inflammation, gut microbiota, and metabolic health. Probiotics are defined as live microorganisms that confer health benefits to the host, primarily through their impact on the gut microbiome; a complex community of microorganisms crucial for maintaining health. The review aims to elucidate how probiotics, incorporated into both traditional and modern food systems, can enhance gut health and address metabolic disorders.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.

View Article and Find Full Text PDF

Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!