Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticle-mediated photoporation has arisen as a universal intracellular delivery tool; however, the direct interaction of nanoparticles and cells hampers its clinical translation. Here, we report a uniform contactless intracellular delivery that transfects a large number of cells within a minute and avoids direct contact of nanoparticles and cells, thereby improving the cell viability. Our platform consists of an array of polydimethylsiloxane (PDMS) mixed reduced graphene oxide (rGO) nanoflakes on pyramidal microtips, uniformly distributed at the apex of the tip. The extraordinary optoelectronic properties of rGO were combined with micro-pyramidal cavities to entrap light in micro-cavities and efficiently convert it into heat through multiple reflections and absorptions. As a result, ultralow infra-red laser pulse irradiation could create cavitation bubbles followed by cell membrane deformation and biomolecular delivery. Using this delivery platform, we have achieved the delivery of small to large cargo (668 Da to 465 kDa) in various mammalian cells, including hard-to-transfect H9C2 cardiomyocytes. The best results were achieved for enzyme (465 kDa) delivery with a transfection efficiency and cell viability of 95% and 98%, respectively, in SiHa cells. The highly efficient cargo delivery tool demonstrated a safe and effective approach for cell therapy and diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4lc00121d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!