Using Porous Liquids to Perform Liquid-Liquid Separations.

Angew Chem Int Ed Engl

School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.

Published: October 2024

AI Article Synopsis

  • Porous liquids (PLs) are being researched for their ability to separate gas mixtures and have potential applications for separating miscible liquids, specifically in recovering monoethylene glycol (MEG) from water and extracting alcohol from beverages.
  • PLs like ZIF-8@PDMS and ZIF-8@sesame oil show high stability and effectiveness in extracting MEG even from dilute mixtures, while a PEEK membrane aids in the selective separation process.
  • The study suggests that PLs could allow for repeated and efficient liquid-liquid separations due to their unique properties, offering promising applications for continuous extraction methods.

Article Abstract

Porous liquids (PLs) are a new type of fluid sorbent investigated mainly for the separation of gas mixtures. Here, we explore their application to the separation of miscible liquids, using MEG/water (MEG=monoethylene glycol) and EtOH/water as proof-of-principle. Recovery of used MEG is industrially important but its extraction into conventional solvents from water is difficult. PLs ZIF-8@PDMS (PL1, PDMS=polydimethylsilicone) or ZIF-8@sesame oil (PL2) each consisting of 25 wt % of the hydrophobic microporous material ZIF-8 dispersed in PDMS or sesame oil respectively, were formulated and found to be exceedingly physically stable to sedimentation. A 5 nm PEEK membrane was used to provide a permeable barrier between the PL and the alcohol/water phase. MEG was selectively extracted through the membrane from approximately 50 : 50 wt % MEG/water mixtures into the PL phase and this procedure could be applied repeatedly. It was effective for MEG/water mixtures as dilute as 3 : 97 wt %. The PL could also be regenerated (80 °C at 0.01 bar) and re-used, suggesting its potential for continuous, cyclic extraction. Furthermore, PL3 (silicalite-1@PDMS) was effective in selective alcohol extraction from beverages. It shows potential for lowering the alcohol concentration in gin or wine due to its excellent chemical stability and nontoxicity. Overall, we show that the enhanced adsorption properties of PLs due the presence of empty pores, which provides unusually high gas solubilities, also makes them, in principle, applicable to liquid-liquid separations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202409894DOI Listing

Publication Analysis

Top Keywords

porous liquids
8
liquid-liquid separations
8
meg/water mixtures
8
liquids perform
4
perform liquid-liquid
4
separations porous
4
liquids pls
4
pls type
4
type fluid
4
fluid sorbent
4

Similar Publications

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.

View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

Electrochemical carbon dioxide (CO) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO electrolysis. However, liquid-phase CO electrolysis often exhibits low CO reduction rates because of limited CO availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO conversion to CO with high rates from an aqueous bicarbonate solution.

View Article and Find Full Text PDF

Ultrathin polymer membranes on porous substrates exhibit excellent gas and ion permeability and have important applications in many fields, such as membrane separation and batteries. However, there is still a lack of facile and general methods for the direct preparation of ultrathin polymer membranes on porous substrates, especially from polymer solutions. Within this work, a new strategy to fabricate centimeter-size ultrathin polymer membranes (thickness down to 16 nm) is presented directly on porous supports by using the liquid-liquid interfacial spin-coating technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!