Introduction: Although COVID-19 is not currently a public health emergency, it will affect susceptible individuals in the post-COVID-19 era. Hence, the present study aimed to develop a model for Iranian patients to identify at-risk groups based on past medical history (PMHx) and some other factors affecting the death of patients hospitalized with COVID-19.

Methods: A secondary study was conducted with the existing data of hospitalized COVID-19 adult patients in the hospitals covered by Iran University of Medical Sciences. PMHx was extracted from the registered ICD-10 codes. Stepwise logistic regression was used to predict mortality by PMHx and background covariates such as intensive care unit (ICU) admission. Crude population attributable fraction (PAF) as well as crude and adjusted odds ratio (OR) with 95% confidence interval (CI) were reported.

Results: A total of 8879 patients were selected with 19.68% mortality. Infectious and parasitic diseases' history showed the greatest association (OR = 5.72, 95% CI: 4.20, 7.82), while the greatest PAF was for cardiovascular system diseases (20.46%). According to logistic regression modeling, the largest effect, other than ICU admission and age, was for history of infectious and parasitic diseases (OR = 3.089, 95% CI: 2.13, 4.47). A good performance was achieved (area under curve = 0.875).

Conclusion: Considering the prevalence of underlying diseases, many mortality cases of COVID-19 are attributable to the history of cardiovascular disease. Future studies are needed for policy making regarding reduction of COVID-19 mortality in susceptible groups in the post-COVID-19 era.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233185PMC
http://dx.doi.org/10.1155/2024/3256108DOI Listing

Publication Analysis

Top Keywords

based medical
8
medical history
8
hospitalized covid-19
8
post-covid-19 era
8
logistic regression
8
icu admission
8
infectious parasitic
8
mortality
5
history
5
covid-19
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!