This paper presents an innovative strategy to address the issues of clogging and cluster-related challenges in microchannels within microfluidic devices. Leveraging three-dimensional (3D) microbubble streaming as a dynamic solution, our approach involves the controlled activation of microbubbles near channel constrictions, inducing microstreaming with distinctive features. This microstreaming, characterized by a high non-uniform 3D gradient and significant shear stress, effectively inhibits arch formation at constrictions and disintegrates particle clusters, demonstrating real-time prevention of clogging incidents and blockages. This study includes experimental validation of the anti-clogging technique, a detailed examination of microstreaming phenomena, and their effects on clogging and clustering issues. It also incorporates statistical analyses performed in various scenarios to verify the method's effectiveness and adaptability. Moreover, a versatile control system has been designed that operates in event-triggered, continuous, or periodic modes, which suits different lab-on-a-chip applications and improves the overall functionality of microfluidic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232117 | PMC |
http://dx.doi.org/10.1063/5.0214436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!