Among the 3d-transition metal hydroxide series, nickel hydroxide is a well-studied electroactive catalyst. In particular, nickel hydroxide and its composite materials are well-suited for non-enzymatic glucose sensing. The electrocatalytic efficiency of nickel hydroxide is attributed to the thickness or to be precise, the thinness of the electroactive layer. Herein, we have successfully prepared metallic nickel@nickel hydroxide nanosheets through a straightforward one-pot solvothermal method. We were able to electrochemically generate a highly sensitive α-Ni(OH) on the nanosheets. The dynamic generation and synergy between α- and β-Ni(OH), imparts a glucose oxidase enzyme-like ability to the catalyst. Our proposed nickel nanozyme exhibits a good sensitivity of 683 μA mM cm for glucose. The sensor operates in the range of 0.001-3.1 mM, with a lower limit of detection (LOD) of 9.1 μM and exhibits a response time of ≈00.1 s. Nickel-nanozyme demonstrated better selectivity for glucose in the presence of interfering compounds. Notably, the sensor does not suffer from an interfering oxygen evolution reaction. This greatly improves sensitivity in glucose detection in lower concentrations making the sensor viable to measure salivary glucose levels. In this study, we demonstrate that our sensor can detect glucose in human saliva. The real sample analysis was carried out with saliva samples from three healthy human volunteers and one prediabetic volunteer. Our proposed sensor measurements show excellent agreement with calculated salivary glucose levels with 98% accuracy in sensing glucose in real saliva samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232413PMC
http://dx.doi.org/10.1039/d4ra03559cDOI Listing

Publication Analysis

Top Keywords

nickel hydroxide
16
salivary glucose
12
glucose
10
glucose sensor
8
glucose levels
8
saliva samples
8
hydroxide
6
sensor
6
nickel
5
generation turbostratic
4

Similar Publications

A Hierarchical Core-Shell Structure of NiO@CuO-CF for Effective Non-Enzymatic Electrochemical Glucose Detection.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.

Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)@Cu(OH)-CF) was fabricated and derived from NiO@CuO-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions.

View Article and Find Full Text PDF

5-Fluorouracil (5-Fu) is the third-most often used chemotherapeutic medication and has been scientifically demonstrated to be effective in treating solid tumors, including colorectal, stomach, cutaneous, and breast cancers. When used in excess, it accumulates toxic metabolites, which can have deadly and very harmful effects on people, including neurotoxicity and the induction of morbidity. Therefore, sensitive and rapid analytical techniques for detecting 5-Fu in human blood serum are needed to enhance chemotherapy and forecast the possible adverse effects of 5-Fu residues in the human body.

View Article and Find Full Text PDF

Photocatalytic hydrogen evolution using inexhaustible clean solar energy is considered as a promising strategy. In order to build an efficient photocatalytic hydrogen production system to satisfy the demands of practical applications, it is of great significance to design photocatalysts that offer high activity, low cost, and high stability. Herein, a series of cheap CdS/Ni(OH) composite photocatalysts were designed and synthesized using the hydrothermal method.

View Article and Find Full Text PDF

In this study, a preconcentration strategy based on Ni(OH) nanoflowers (NFs) was developed for the extraction/separation of bismuth ions from environmental water samples before the determination by flame atomic absorption spectrometry (FAAS). The homogeneous coprecipitation method was employed for the synthesis of the flower-shaped Ni(OH) and used as an adsorbent for the preconcentration of bismuth. The extraction variables were determined by a univariate optimization strategy to obtain maximum extraction performance.

View Article and Find Full Text PDF

Insights into the Electrochemical Oxidation and Reduction of Nickel Oxide Surfaces.

ACS Appl Mater Interfaces

January 2025

Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

Surface oxidation/reduction processes, driven by varying electrochemical potentials, can substantially impact catalyst effectiveness and, consequently, electrolyzer performance. This study combines theoretical and experimental approaches to explore the surface redox behavior of nickel oxides, which are cost-effective and efficient catalysts for many electrochemical reactions. Surface Pourbaix diagrams for three different phases of nickel oxides, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!