This study explores the efficacy of our novel and personalized brain-computer interface (BCI) therapy, in enhancing hand movement recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery-based BCIs (MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and adaptable approach to neurofeedback training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232286PMC
http://dx.doi.org/10.1093/pnasnexus/pgae240DOI Listing

Publication Analysis

Top Keywords

hand movement
16
movement recovery
8
personalized brain-computer
8
brain-computer interface
8
stroke survivors
8
neurofeedback training
8
hand
6
enhancing poststroke
4
poststroke hand
4
movement
4

Similar Publications

A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.

View Article and Find Full Text PDF

Purpose: Rett syndrome (RTT) is a rare neurodevelopmental disorder that mainly affects girls and women. Trofinetide is approved for the treatment of RTT in adults and children aged ≥2 years. To gain insight into experiences with RTT and effects of trofinetide treatment at different stages of RTT, interviews with caregivers of individuals with RTT were conducted upon their exit from the open-label trofinetide trials.

View Article and Find Full Text PDF

Gravity has long been purported to serve a unique role in sensorimotor coordination, but the specific mechanisms underlying gravity-based visuomotor realignment remain elusive. In this study, astronauts (9 males, 2 females) performed targeted hand movements with eyes open or closed, both on the ground and in weightlessness. Measurements revealed systematic drift in hand-path orientation seen only when eyes were closed and only in very specific conditions with respect to gravity.

View Article and Find Full Text PDF

Rationale: Patients who experience seizures, including PNES, are usually advised to discontinue driving, or have their driving privileges revoked until a determined period of seizure-freedom is achieved. In this retrospective study, patients with PNES who requested driving privileges or reported having resumed driving were compared to those who did not on measures of depression, anxiety, PTSD, and cognitive flexibility/motor speed.

Methods: DiagnosisofPNESwasconfirmedwithvideo-EEG.

View Article and Find Full Text PDF

Background: Upper limb fractures significantly alter movement, impacting function and recovery. Three-dimensional motion analysis allows precise assessment of these changes.

Methods: Sixty patients were divided into four groups: shoulder, elbow, wrist fractures, and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!