A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distributed Inference for Spatial Extremes Modeling in High Dimensions. | LitMetric

Extreme environmental events frequently exhibit spatial and temporal dependence. These data are often modeled using max stable processes (MSPs) that are computationally prohibitive to fit for as few as a dozen observations. Supposed computationally-efficient approaches like the composite likelihood remain computationally burdensome with a few hundred observations. In this paper, we propose a spatial partitioning approach based on local modeling of subsets of the spatial domain that delivers computationally and statistically efficient inference. Marginal and dependence parameters of the MSP are estimated locally on subsets of observations using censored pairwise composite likelihood, and combined using a modified generalized method of moments procedure. The proposed distributed approach is extended to estimate inverted MSP models, and to estimate spatially varying coefficient models to deliver computationally efficient modeling of spatial variation in marginal parameters. We demonstrate consistency and asymptotic normality of estimators, and show empirically that our approach leads to statistically efficient estimation of model parameters. We illustrate the flexibility and practicability of our approach through simulations and the analysis of streamflow data from the U.S. Geological Survey.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230648PMC
http://dx.doi.org/10.1080/01621459.2023.2186886DOI Listing

Publication Analysis

Top Keywords

composite likelihood
8
statistically efficient
8
spatial
5
distributed inference
4
inference spatial
4
spatial extremes
4
extremes modeling
4
modeling high
4
high dimensions
4
dimensions extreme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!