Background: Electronic cigarettes (ECs) have been promoted as alternatives to traditional cigarettes.
Aim: To investigate ECs' effects on respiratory system, especially in patients with respiratory diseases.
Methods: We randomly selected 25 smokers with stable moderate asthma and matched them with 25 healthy smokers. All were subjucted to pulmonary function tests (PFTs), impulse oscillometry (IOS), fraction exhaled Nitric Oxide (FeNO), exhaled breathe condensate (EBC) and biomarker measurements before and after vaping one nicotine-containing EC.
Results: The increase in FeNO 30 minutes after EC, reflecting airway inflammation, significantly correlated with increase of residual volume (RV), total lung capacity, respiratory impedance at 5 Hz (Z5Hz) and respiratory resistance at 5 and 20 Hz (R5Hz and R20Hz). No significant correlations were found between EBC biomarkers' changes and respiratory mechanics.
Conclusion: This is the first study demonstrating that the changes in airway inflammation caused by EC have direct effects in respiratory mechanics of asthmatic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229872 | PMC |
http://dx.doi.org/10.5662/wjm.v14.i2.89284 | DOI Listing |
Allergol Immunopathol (Madr)
January 2025
Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou City, Jiangsu Province, China;
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, airway obstruction, and lung damage, often triggered by cigarette smoke. Dysregulated autophagy and inflammation are key contributors to its progression. Although double-stranded RNA-binding protein Staufen homolog 1 (STAU1), a multifunctional protein primarily involved in mRNA transport and localization, is identified as a potential biomarker, its role in COPD pathogenesis remains unclear.
View Article and Find Full Text PDFRespir Res
January 2025
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland.
Background: Pathobiology of asthma and chronic obstructive pulmonary disease (COPD) is associated with changes among respiratory epithelium structure and function. Increased levels of PM from urban particulate matter (UPM) are correlated with enlarged rate of asthma and COPD morbidity as well as acute disease exacerbation. It has been suggested that pre-existing pulmonary obstructive diseases predispose epithelium for different biological response than in healthy airways.
View Article and Find Full Text PDFJ Clin Pathol
January 2025
Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA.
Aims: In cystic fibrosis lung transplant recipients (LTRs), graft dysfunction due to acute infections, rejection or chronic lung allograft dysfunction (CLAD) is difficult to distinguish. Characterisation of the airway inflammatory milieu could help detect and prevent graft dysfunction. We speculated that an eosinophil or neutrophil-rich milieu is associated with higher risk of CLAD.
View Article and Find Full Text PDFInflammation
January 2025
Department of Clinical Research Center for Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, 214000, Jiangsu, China.
Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!