A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning for MRI lesion segmentation in rectal cancer. | LitMetric

Rectal cancer (RC) is a globally prevalent malignant tumor, presenting significant challenges in its management and treatment. Currently, magnetic resonance imaging (MRI) offers superior soft tissue contrast and radiation-free effects for RC patients, making it the most widely used and effective detection method. In early screening, radiologists rely on patients' medical radiology characteristics and their extensive clinical experience for diagnosis. However, diagnostic accuracy may be hindered by factors such as limited expertise, visual fatigue, and image clarity issues, resulting in misdiagnosis or missed diagnosis. Moreover, the distribution of surrounding organs in RC is extensive with some organs having similar shapes to the tumor but unclear boundaries; these complexities greatly impede doctors' ability to diagnose RC accurately. With recent advancements in artificial intelligence, machine learning techniques like deep learning (DL) have demonstrated immense potential and broad prospects in medical image analysis. The emergence of this approach has significantly enhanced research capabilities in medical image classification, detection, and segmentation fields with particular emphasis on medical image segmentation. This review aims to discuss the developmental process of DL segmentation algorithms along with their application progress in lesion segmentation from MRI images of RC to provide theoretical guidance and support for further advancements in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231084PMC
http://dx.doi.org/10.3389/fmed.2024.1394262DOI Listing

Publication Analysis

Top Keywords

medical image
12
deep learning
8
lesion segmentation
8
rectal cancer
8
segmentation
5
learning mri
4
mri lesion
4
segmentation rectal
4
cancer rectal
4
cancer globally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!