A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive multi-source domain collaborative fine-tuning for transfer learning. | LitMetric

Adaptive multi-source domain collaborative fine-tuning for transfer learning.

PeerJ Comput Sci

Guizhou Key Laboratory of Pattern Recognition and Intelligent System, Guizhou Minzu University, Guiyang, China.

Published: June 2024

Fine-tuning is an important technique in transfer learning that has achieved significant success in tasks that lack training data. However, as it is difficult to extract effective features for single-source domain fine-tuning when the data distribution difference between the source and the target domain is large, we propose a transfer learning framework based on multi-source domain called adaptive multi-source domain collaborative fine-tuning (AMCF) to address this issue. AMCF utilizes multiple source domain models for collaborative fine-tuning, thereby improving the feature extraction capability of model in the target task. Specifically, AMCF employs an adaptive multi-source domain layer selection strategy to customize appropriate layer fine-tuning schemes for the target task among multiple source domain models, aiming to extract more efficient features. Furthermore, a novel multi-source domain collaborative loss function is designed to facilitate the precise extraction of target data features by each source domain model. Simultaneously, it works towards minimizing the output difference among various source domain models, thereby enhancing the adaptability of the source domain model to the target data. In order to validate the effectiveness of AMCF, it is applied to seven public visual classification datasets commonly used in transfer learning, and compared with the most widely used single-source domain fine-tuning methods. Experimental results demonstrate that, in comparison with the existing fine-tuning methods, our method not only enhances the accuracy of feature extraction in the model but also provides precise layer fine-tuning schemes for the target task, thereby significantly improving the fine-tuning performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232598PMC
http://dx.doi.org/10.7717/peerj-cs.2107DOI Listing

Publication Analysis

Top Keywords

multi-source domain
20
source domain
20
transfer learning
16
domain
13
adaptive multi-source
12
domain collaborative
12
collaborative fine-tuning
12
domain models
12
target task
12
fine-tuning
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!