Poultry farming is an indispensable part of global agriculture, playing a crucial role in food safety and economic development. Managing and preventing diseases is a vital task in the poultry industry, where semantic segmentation technology can significantly enhance the efficiency of traditional manual monitoring methods. Furthermore, traditional semantic segmentation has achieved excellent results on extensively manually annotated datasets, facilitating real-time monitoring of poultry. Nonetheless, the model encounters limitations when exposed to new environments, diverse breeding varieties, or varying growth stages within the same species, necessitating extensive data retraining. Overreliance on large datasets results in higher costs for manual annotations and deployment delays, thus hindering practical applicability. To address this issue, our study introduces HSDNet, an innovative semantic segmentation model based on few-shot learning, for monitoring poultry farms. The HSDNet model adeptly adjusts to new settings or species with a single image input while maintaining substantial accuracy. In the specific context of poultry breeding, characterized by small congregating animals and the inherent complexities of agricultural environments, issues of non-smooth losses arise, potentially compromising accuracy. HSDNet incorporates a Sharpness-Aware Minimization (SAM) strategy to counteract these challenges. Furthermore, by considering the effects of imbalanced loss on convergence, HSDNet mitigates the overfitting issue induced by few-shot learning. Empirical findings underscore HSDNet's proficiency in poultry breeding settings, exhibiting a significant 72.89% semantic segmentation accuracy on single images, which is higher than SOTA's 68.85%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232614 | PMC |
http://dx.doi.org/10.7717/peerj-cs.2080 | DOI Listing |
Sci Rep
January 2025
Ministry of Higher Education & Scientific Research, Industrial Technical Institute in Mataria, Cairo, 11718, Egypt.
"PolynetDWTCADx" is a sophisticated hybrid model that was developed to identify and distinguish colorectal cancer. In this study, the CKHK-22 dataset, comprising 24 classes, served as the introduction. The proposed method, which combines CNNs, DWTs, and SVMs, enhances the accuracy of feature extraction and classification.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer and Control Engineering, Qiqihar University, Qiqihar, 161003, China.
In semantic segmentation research, spatial information and receptive fields are essential. However, currently, most algorithms focus on acquiring semantic information and lose a significant amount of spatial information, leading to a significant decrease in accuracy despite improving real-time inference speed. This paper proposes a new method to address this issue.
View Article and Find Full Text PDFSci Rep
January 2025
Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.
View Article and Find Full Text PDFNeural Netw
December 2024
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. Electronic address:
Manual annotation of ultrasound images relies on expert knowledge and requires significant time and financial resources. Semi-supervised learning (SSL) exploits large amounts of unlabeled data to improve model performance under limited labeled data. However, it faces two challenges: fusion of contextual information at multiple scales and bias of spatial information between multiple objects.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics, Information and Communication Engineering, Kangwon National University, Samcheok, Republic of Korea.
Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!