To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpae083 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFBot Stud
January 2025
Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706.
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.
View Article and Find Full Text PDFJ Med Chem
January 2025
Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China.
Synthetic lethality offers a robust strategy for discovering the next generation of precision medicine therapies tailored for molecularly defined patient populations. MAT2A inhibition is synthetically lethal in several cancers that exhibit a homozygous deletion of -methyl-5'-thioadenosine phosphorylase (MTAP). Herein, we report the identification of novel MAT2A inhibitors featuring a spiral ring to circumvent the C-N atropisomeric chirality utilizing structure-based drug design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!