GSDMB-mediated pyroptosis facilitates a pro-inflammatory immune microenvironment and needs to be tightly regulated to avoid excessive inflammation. Here, we provide evidence that itaconate and its cell-permeable derivative 4-octyl itaconate (4-OI) can significantly inhibit GSDMB-rendered pyroptotic activity independent of Nrf2. 4-OI interferes proteolytic process of GSDMB by directly modifying Cys54, Cys148 and Ser212 on granzyme A (GrzA), a serine protease that site-specifically cleaves the inter-domain linker of GSDMB, instead of interaction with GSDMB, thereby blocking pyroptosis and exerts anti-inflammatory effects. Moreover, 4-OI alleviates inflammation by suppressing GSDMB-induced pyroptotic cell death during acute colitis models in intestinal epithelial GSDMB conditional transgenic mice. Our data expand the role of 4-OI as a crucial immunometabolic derivative that regulates innate immunity and inflammation through a newly identified posttranslational modification, and targeting of pyroptosis by 4-OI therefore holds potent therapeutic potential for primarily inflammatory and/or autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628737 | PMC |
http://dx.doi.org/10.1111/cpr.13711 | DOI Listing |
Int Immunopharmacol
December 2024
Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:
This study aimed to elucidate the protective roles of Immune Response Gene-1 (IRG1) and exogenous itaconate in murine models of hepatic fibrosis and to delineate the underlying mechanistic pathways using both wild-type and IRG1-deficient (IRG1) mice. Primary murine stellate cells (mHSC) and bone marrow-derived macrophages (BMDM) were isolated and cocultured. Hepatocellular fibrosis was induced in vitro using Transforming Growth Factor-beta (TGF-β) to evaluate the protective efficacy of IRG1/itaconate.
View Article and Find Full Text PDFChin J Traumatol
November 2024
Department of Training Injury Prevention, Army Medical University, Chongqing, 400000, China. Electronic address:
Purpose: To investigate the pathological changes of the synovium in mice with post-traumatic osteoarthritis (PTOA) treated with 4-octyl itaconate (4-OI) and evaluate the therapeutic effects of 4-OI.
Methods: In the phenotypic validation experiment, the mice were randomly divided into 3 groups: wild-type (WT) group, sham group, and destabilization of the medial meniscus (DMM) group. Through MRI, micro-CT, and histological analysis, it was determined that DMM surgery induced a mouse PTOA model with significant signs of synovitis.
Neurochem Res
November 2024
Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany.
Itaconate is produced as endogenous metabolite by decarboxylation of the citric acid cycle intermediate cis-aconitate. As itaconate has anti-microbial and anti-inflammatory properties, this substance is considered as potential therapeutic drug for the treatment of inflammation in various diseases including traumatic brain injury and stroke. To test for potential adverse effects of itaconate on the viability and metabolism of brain cells, we investigated whether itaconate or its membrane permeable derivatives dimethyl itaconate (DI) and 4-octyl itaconate (OI) may affect the basal glucose and glutathione (GSH) metabolism of cultured primary astrocytes.
View Article and Find Full Text PDFCommun Biol
November 2024
Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
Eur J Pharmacol
December 2024
Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China. Electronic address:
Vascular calcification frequently occurs in patients with chronic conditions such as chronic kidney disease (CKD), diabetes, and hypertension and represents a significant cause of cardiovascular events. Thus, identifying effective therapeutic targets to inhibit the progression of vascular calcification is essential. 4-Octyl itaconate (4-OI), a derivative of itaconate, exhibits anti-inflammatory and antioxidant activity, both of which play an essential role in the progression of vascular calcification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!