C-X-C motif chemokine receptor 4 (CXCR4) is a promising therapeutic target of breast cancer because it is overexpressed on cell surface of all molecular subtypes of breast cancer including triplenegative breast cancer (TNBC). Herein, CXCR4 antagonistic peptide-NaGdF nanodot conjugates (termed as anti-CXCR4-NaGdF NDs) have been constructed for magnetic resonance imaging (MRI)-guided biotherapy of TNBC through conjugation of the C-X-C Motif Chemokine 12 (CXCL12)-derived cyclic peptide with tryptone coated NaGdF nanodots (5 ± 0.5 nm in diameter, termed as Try-NaGdF NDs). The as-prepared anti-CXCR4-NaGdF NDs exhibits high longitudinal relaxivity (r) value (21.87 mMS), reasonable biocompatibility and good tumor accumulation ability. The features of anti-CXCR4-NaGdF NDs improve the tumor-MRI sensitivity and facilitate tumor biotherapy after injection in mouse-bearing MDA-MB-231 tumor model in vivo. MRI-guided biotherapy using anti-CXCR4-NaGdF NDs enables to suppress 46% tumor growth. In addition, about 47% injection dose of anti-CXCR4-NaGdF NDs is found in the mouse urine at 24 h post-injection. These findings demonstrate that anti-CXCR4-NaGdF NDs enable to be used as renal clearable nanomedicine for biotherapy and MRI of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233619PMC
http://dx.doi.org/10.1038/s41598-024-66645-2DOI Listing

Publication Analysis

Top Keywords

anti-cxcr4-nagdf nds
24
breast cancer
20
c-x-c motif
12
motif chemokine
12
chemokine receptor
8
nagdf nanodots
8
magnetic resonance
8
mri-guided biotherapy
8
nds
7
anti-cxcr4-nagdf
6

Similar Publications

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is associated with an increased risk of major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). We aimed to identify predictors and develop models for the prediction of depression and PTSD symptoms at 6 months post-TBI.

Methods: We analysed data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury study.

View Article and Find Full Text PDF

Objectives: Mutations in the gene encoded glycoprotein progranulin (PGRN), cause 5-10 % of all cases of frontotemporal lobar degeneration (FTLD). The aim of our study was to verify the analytical and clinical performance of an automated chemiluminescent immunoassay method for PGRN measurement recently developed (Chorus Evo, Diesse Diagnostica, Italy).

Methods: Five plasma pools and residual plasma samples (KEDTA) from 25 control subjects (11 males, 62-79 years; 14 females, 54-76 years) and 151 patients (70 males, 53-81 years; 81 females, 44-82 years) with different neurodegenerative disorders (NDs), were assayed.

View Article and Find Full Text PDF

Eye lens dosimetry: does the direction of rotation (vertical or horizontal) play a role in type testing?

J Radiol Prot

January 2025

Radiation Protection Dosimetry (6.3), Physikalisch-Technische Bundesanstalt, Braunschweig, NDS, GERMANY.

With the International Commission on Radiological Protection (ICRP) lowering the annual dose limit for the eye lens to 20 mSv, precise monitoring of eye lens exposure has become essential. The personal dose equivalent at a depth of 3 mm, Hp(3), is the measurement method for monitoring the dose to the lens of the eye. Traditional dosimetry methods primarily address lateral radiation exposure scenarios, where radiation approaches from the left or right, necessitating the rotation of the phantom during type testing around the vertical axis.

View Article and Find Full Text PDF

C9orf72 role in myeloid cells: new perspectives in the investigation of the neuro-immune crosstalk in amyotrophic lateral sclerosis and frontotemporal dementia.

Ann Transl Med

December 2024

Department of Neuroscience, Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!