Development and validation of a clinical predictive model for high-volume lymph node metastasis of papillary thyroid carcinoma.

Sci Rep

Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou, 310006, China.

Published: July 2024

The central lymph node metastasis (CLNM) status in the cervical region serves as a pivotal determinant for the extent of surgical intervention and prognosis in papillary thyroid carcinoma (PTC). This paper seeks to devise and validate a predictive model based on clinical parameters for the early anticipation of high-volume CLNM (hv-CLNM, > 5 nodes) in high-risk patients. A retrospective analysis of the pathological and clinical data of patients with PTC who underwent surgical treatment at Medical Centers A and B was conducted. The data from Center A was randomly divided into training and validation sets in an 8:2 ratio, with those from Center B serving as the test set. Multifactor logistic regression was harnessed in the training set to select variables and construct a predictive model. The generalization ability of the model was assessed in the validation and test sets. The model was evaluated through the receiver operating characteristic area under the curve (AUC) to predict the efficiency of hv-CLNM. The goodness of fit of the model was examined via the Brier verification technique. The incidence of hv-CLNM in 5897 PTC patients attained 4.8%. The occurrence rates in males and females were 9.4% (128/1365) and 3.4% (156/4532), respectively. Multifactor logistic regression unraveled male gender (OR = 2.17, p < .001), multifocality (OR = 4.06, p < .001), and lesion size (OR = 1.08 per increase of 1 mm, p < .001) as risk factors, while age emerged as a protective factor (OR = 0.95 per an increase of 1 year, p < .001). The model constructed with four predictive variables within the training set exhibited an AUC of 0.847 ([95%CI] 0.815-0.878). In the validation and test sets, the AUCs were 0.831 (0.783-0.879) and 0.845 (0.789-0.901), respectively, with Brier scores of 0.037, 0.041, and 0.056. Subgroup analysis unveiled AUCs for the prediction model in PTC lesion size groups (≤ 10 mm and > 10 mm) as 0.803 (0.757-0.85) and 0.747 (0.709-0.785), age groups (≤ 31 years and > 31 years) as 0.778 (0.720-0.881) and 0.837 (0.806-0.867), multifocal and solitary cases as 0.803 (0.767-0.838) and 0.809 (0.769-0.849), and Hashimoto's thyroiditis (HT) and non-HT cases as 0.845 (0.793-0.897) and 0.845 (0.819-0.871). Male gender, multifocality, and larger lesion size are risk factors for hv-CLNM in PTC patients, whereas age serves as a protective factor. The clinical predictive model developed in this research facilitates the early identification of high-risk patients for hv-CLNM, thereby assisting physicians in more efficacious risk stratification management for PTC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233634PMC
http://dx.doi.org/10.1038/s41598-024-66304-6DOI Listing

Publication Analysis

Top Keywords

predictive model
12
lymph node
8
node metastasis
8
papillary thyroid
8
thyroid carcinoma
8
multifactor logistic
8
logistic regression
8
model
6
development validation
4
validation clinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!