Reduced cell-mediated immune response in hyperglycemic NOD mice following influenza vaccination.

Vaccine

Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea. Electronic address:

Published: November 2024

Due to the higher risk of medical complications posed by influenza infection, patients with type 1 diabetes (T1D) are strongly recommended to receive the influenza vaccine. However, it remains unclear if hyperglycemia in patients with T1D affects vaccine-induced immune responses. In this study, we investigated the humoral and cellular immune responses of prediabetic and diabetic, nonobese diabetic (NOD) mice following influenza vaccination to determine the effects of hyperglycemia on influenza vaccine-induced responses. In diabetic NOD mice, vaccine-specific IgG and IgM levels, as well as IgG-producing cells, were comparable to those in prediabetic NOD mice. However, the diabetic NOD mice exhibited reduced percentages of memory T cells and activated T cells in the spleen, along with reduced number of vaccine-specific interferon (IFN)-γ-secreting cells. Thus, these findings suggest that in patients with T1D, hyperglycemia could lead to impaired cell-mediated immune responses following influenza vaccination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2024.07.017DOI Listing

Publication Analysis

Top Keywords

nod mice
20
influenza vaccination
12
immune responses
12
diabetic nod
12
cell-mediated immune
8
mice influenza
8
patients t1d
8
influenza
6
nod
5
mice
5

Similar Publications

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!