The advent of large language models (LLMs) based on neural networks marks a significant shift in academic writing, particularly in medical sciences. These models, including OpenAI's GPT-4, Google's Bard, and Anthropic's Claude, enable more efficient text processing through transformer architecture and attention mechanisms. LLMs can generate coherent texts that are indistinguishable from human-written content. In medicine, they can contribute to the automation of literature reviews, data extraction, and hypothesis formulation. However, ethical concerns arise regarding the quality and integrity of scientific publications and the risk of generating misleading content. This article provides an overview of how LLMs are changing medical writing, the ethical dilemmas they bring, and the possibilities for detecting AI-generated text. It concludes with a focus on the potential future of LLMs in academic publishing and their impact on the medical community.

Download full-text PDF

Source

Publication Analysis

Top Keywords

large language
8
language models
8
models changing
4
changing landscape
4
landscape academic
4
academic publications
4
publications positive
4
positive transformation?
4
transformation? advent
4
advent large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!