Identifying the fate of dissolved organic matter in wastewater treatment plant effluent-dominated urban river based on fluorescence fingerprinting and flux budget approach.

Sci Total Environ

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Published: October 2024

Effluent organic matter from wastewater treatment plants (WWTPs) is an important source of dissolved organic matter (DOM) in urban rivers worldwide and is an important water quality factor. Identifying the fate of DOM in urban river is crucial for water quality management. To address this concern, a fluorescent flux budget approach was conducted to probe the fate of DOM in WWTP effluent-dominated urban river, in combination with field measurement and fluorescence fingerprinting. An urban river receiving two WWTP effluents in Hefei City, China was chosen as the study site, where longitudinal measurements of river hydrology and water quality were performed. The fluorescence fingerprinting revealed the presence of two humic-like components (C1, C4), one fulvic-like component (C2) and one protein-like component (C3) in this investigated river, among which C2 and C4 were indicative of anthropogenic influences, closely associated with treated effluents. For each fluorescent component, the WWTP effluent contributed over 80 % of the total fluorescent dissolved organic matter (FDOM) input in this river. Using the developed FDOM flux budget model, it was found that the C1 and C3 were almost conserved within the waterbody, while the C2 and C4 experienced losses due to biogeochemical reactions. The decay rates of C2 and C4 were estimated to be 0.109-0.174 d and 0.096-0.320 d, respectively. Spatial heterogeneity of decay rates for C2 and C4 were associated with the varied chemistries of the lateral input sources including two treated effluents and one tributary flow. Our study highlights that after treated effluent is released into the receiving waterbody, the FDOM would undergo loss from the waters particularly for anthropogenic fulvic-like substance C2 and humic-like substance C4. Additionally, the quantified FDOM decay rate in actual urban water environment provides insights for river water quality management, especially when using DOM as the surrogate indicator of organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174580DOI Listing

Publication Analysis

Top Keywords

organic matter
16
urban river
16
water quality
16
dissolved organic
12
fluorescence fingerprinting
12
flux budget
12
identifying fate
8
matter wastewater
8
wastewater treatment
8
effluent-dominated urban
8

Similar Publications

Thermogravimetry coupled with simultaneous evolved gas analysis by mass spectrometry was used for discerning organic compounds released during the thermal degradation of paint whose chemical compositions are not readily accessible. Thermogravimetric analyses up to 600°C revealed distinct degradation patterns under inert and oxidative conditions. Significant degradation of paint initiates at around 360°C and concludes at 500°C in a nitrogen atmosphere.

View Article and Find Full Text PDF

Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored.

View Article and Find Full Text PDF

Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems.

Glob Chang Biol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF

The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF).

View Article and Find Full Text PDF

Interactive effects of salinity, redox, and colloids on greenhouse gas production and carbon mobility in coastal wetland soils.

PLoS One

December 2024

Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!