KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site. The resulting X-ray structures of the novel compounds bound to KDM4D, a representative of the KDM4 family, revealed the interaction pattern with distal residues in the histone-binding site. The most prominent protein rearrangement detected upon ligand binding is the loop movement that blocks the accessibility to the histone binding site. Apart from providing new sites that potential inhibitors can target, the novel compounds may prove helpful in exploring the capacity of ligands to bind in sites distal to the cofactor-binding site of other KDMs or 2-oxoglutarate (2OG)-dependent oxygenases. The case study proves that combining a strong small binding motif with flexible tails to probe the binding pocket will facilitate lead discovery in classical drug-discovery campaigns, given the ease of accessing X-ray quality crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.116642 | DOI Listing |
J Virol
December 2024
Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
Bacteriophages are viruses infecting bacteria. The vast majority of them bear a tail, allowing host recognition, cell wall perforation, and DNA injection into the host cytoplasm. Using electron cryo-microscopy (cryo-EM) and single particle analysis, we determined the organization of the tail proximal extremity of siphophage T5 that possesses a long flexible tail and solved the structure of its tail terminator protein p142 (TrP).
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Department of Chemistry, Faculty of Science and Technology, Muban ChomBueng Rajabhat University, Chom Bueng, Ratchaburi, 70150, Thailand. Electronic address:
Retinol, α-tocopherol and phylloquinone (vitamins A, E, and K) are presented in high concentrations within the chloroplast and leaves of most plants. They are fat-soluble vitamins and absorb similarly to other dietary lipids. Because the molecular mechanism of retinol, α-tocopherol, and phylloquinone absorption is still unknown, this work aims to investigate the distribution of these vitamins at the water/membrane interface using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFStat Med
December 2024
Department of Statistics, Sungkyunkwan University, Seoul, South Korea.
Analysis of healthcare utilization, such as hospitalization duration and medical costs, is crucial for policymakers and doctors in experimental and epidemiological investigations. Herein, we examine the healthcare utilization data of patients with systemic lupus erythematosus (SLE). The characteristics of the SLE data were measured over a 10-year period with outliers.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.
Cationic:anionic surfactant mixtures adsorbed at an oil-water interface stabilize foams in the presence of oil, making them essential to the oil, gas, and firefighting industries. The oil tolerance of foams stabilized by surfactant mixtures, relative to pure (unmixed) cationic and anionic surfactants, results from the mixtures' enhanced flexibility in tailoring the physicochemical properties of the interface. To judiciously employ these mixtures, it is necessary to characterize the structure-function property relationship of their surfactant monolayers that lend to oil-tolerant/intolerant foams.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, P. O. Box 5025, Awka, Nigeria.
In this study, the Topp-Leone family of distribution approach was used to modify the Burr Hatke Exponential distribution to provide adequate fits for some engineering and health data which previous existing distributions in the family of Burr Hatke Exponential have failed to do. The new distribution improves the robustness of Burr Hatke Exponential distribution by making it capable of modeling emerging new world complex data with varying features, possesses greater capacity and flexibility to model lifetime data, has better goodness of fit. Some mathematical properties of the derived distribution such as quantile function, moments, order statistics, entropies, etc were obtained and discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!