The consequences of heatwaves for the reproductive success and physiology of the wingless sub-Antarctic fly Anatalanta aptera.

J Therm Biol

UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France. Electronic address:

Published: July 2024

Sub-lethal effects of warming temperatures are an important, yet sometimes overlooked impact of climate change that may threaten the long-term survival of numerous species. This, like many other effects of climate change, is especially concerning for cold-adapted ectotherms living in rapidly warming polar regions. This study examines the effects of warmer temperatures on cold-adapted Diptera, using the long-lived sub-Antarctic sphaerocerid fly, Anatalanta aptera, as a focal species. We conducted two experiments to assess heat stress in adult flies, one varying the intensity of the heat stress (daily heating from 4 °C to 8 °C, 20 °C, or 24 °C) and one varying the frequency of heat stress exposure (heating from 4 °C to 12 °C every one, two, or three days) and examined consequences for reproductive success and metabolic responses. We found that more heat stress reduced reproductive output, but not timing of reproduction. Surprisingly, individuals sampled at different times during heat stress exposure were undifferentiable when all metabolite concentrations were analysed with redundancy analysis, however some individual metabolites did exhibit significant differences. Overall, our findings suggest that warmer temperatures in the sub-Antarctic may put this species at greater risk, especially when combined with other concurrent threats from biological invasions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2024.103910DOI Listing

Publication Analysis

Top Keywords

heat stress
20
reproductive success
8
fly anatalanta
8
anatalanta aptera
8
climate change
8
warmer temperatures
8
heating 4 °c
8
stress exposure
8
heat
5
stress
5

Similar Publications

Climate change has caused heat stress (HS) to become an increasingly severe problem for high-producing dairy herds. Although cooling systems allow milk production to remain nearly constant throughout the year, fertility decreases during summer. Physiological counter-current heat transfer mechanisms maintaining brain/hypothalamic and reproductive functions in cattle are vulnerable to HS.

View Article and Find Full Text PDF

Basic leucine zipper (bZIP) transcription factors serve as crucial regulators in plants' response to abiotic stress; however, its function in grapevine heat tolerance is still largely unknown. Here, we undertook a comprehensive investigation of grape genome, leading to the identification of 65 VvbZIP genes, among which 16 VvbZIPs were significantly induced under heat stress. Overexpression of VvbZIP36 enhanced heat tolerance in grape calli, while virus-induced gene silencing (VIGS) of VvbZIP36 reflected thermal sensitivity.

View Article and Find Full Text PDF

N6-methyladenosine modification of host Hsc70 attenuates nucleopolyhedrovirus infection in the lepidopteran model insect Bombyx mori.

Int J Biol Macromol

January 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm.

View Article and Find Full Text PDF

Astragaloside IV can mitigate heat stress-induced tissue damage through modulation of the Keap1-Nrf2 signaling pathway in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China. Electronic address:

This study investigated the potential protective effect of AS-IV against heat stress-induced tissue damage in grass carp (Ctenopharyngodon idella). Grass carp were injected intraperitoneally with 0, 2, 4, and 8 mg/kg of AS-IV for three consecutive days, and then subjected to heat stress (35 ± 0.5°C); thereafter, histopathological analyses of the liver and spleen were performed at 0, 6, 24, and 48 h, respectively.

View Article and Find Full Text PDF

Background: It is not yet clear to what extent the physiological regulatory mechanisms that maintain core body temperature are reflected by changes in resting energy expenditure (REE). Particularly in indirect calorimetry with a canopy, the effects of short-term temperature exposures have not yet been investigated. This can be of relevance for the determination of REE in practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!