Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Development and validation of a radiomics model for predicting occult locally advanced esophageal squamous cell carcinoma (LA-ESCC) on computed tomography (CT) radiomic features before implementation of treatment.
Methods: The study retrospectively collected 574 patients with esophageal squamous cell carcinoma (ESCC) from two medical centers, which were divided into three cohorts for training, internal and external validation. After delineating volume of interest (VOI), radiomics features were extracted and subjected to feature selection using three robust methods. Subsequently, 10 machine learning models were constructed, among which the optimal model was utilized to establish a radiomics signature. Furthermore, a predictive nomogram incorporating both clinical and radiomics signatures was developed. The performance of these models was evaluated through receiver operating characteristic curves, calibration curves, decision curve analysis as well as measures including accuracy, sensitivity, and specificity.
Results: A total of 19 radiomics features were selected. The multilayer perceptron (MLP), which was found to be optimal, achieved an AUC of 0.919, 0.864 and 0.882 in the training, internal and external validation cohorts, respectively. Similarly, MLP showed good accuracy in distinguish occult LA-ESCC in subgroup of cTNM diagnosed by clinicians with 0.803 and 0.789 in two validation cohorts respectively. By incorporating the radiomics signature with clinical signature, a predictive nomogram demonstrated superior prediction performance with an AUC of 0.877 and accuracy of 0.85 in external validation cohort.
Conclusion: The radiomics and machine learning model can offers improved accuracy in prediction of occult LA-ESCC, providing valuable assistance to clinicians when choosing treatment plans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292555 | PMC |
http://dx.doi.org/10.1016/j.tranon.2024.102050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!