Antimony Redox Catalysis: Hydroboration of Disulfides through Unique Sb(I)/Sb(III) Redox Cycling.

J Am Chem Soc

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China.

Published: July 2024

The stibinidene ArSb (Ar = [2,6-(BuN═CH)-CH], ) reacts with STol (Tol = -tolyl) to form ArSb(STol) (), which upon treatment with pinacolborane, regenerates . These processes unveil an unprecedented antimony redox catalysis involving Sb(I)/Sb(III) cycling for the hydroboration of organic disulfides. Elementary reaction studies and density functional theory calculations support that the catalysis mimics transition metal processes, proceeding through oxidative addition, ligand metathesis, and reductive elimination. The thiophenols and sulfidoborates generated from the hydroboration of disulfides react with -unsaturated carbonyl compounds with the assistance of as a base catalyst. These tandem reactions establish a one-pot synthetic method for β-sulfido carbonyl compounds, in which a stibinidene functions as a redox catalyst and a base catalyst successively, illustrating the versatility and efficiency of antimony catalysis in organic synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c05905DOI Listing

Publication Analysis

Top Keywords

antimony redox
8
redox catalysis
8
hydroboration disulfides
8
carbonyl compounds
8
base catalyst
8
catalysis
4
catalysis hydroboration
4
disulfides unique
4
unique sbi/sbiii
4
sbi/sbiii redox
4

Similar Publications

A critical review on arsenic and antimony adsorption and transformation on mineral facets.

J Environ Sci (China)

July 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Arsenic (As) and antimony (Sb), with analogy structure, belong to VA group in the periodic table and pose a great public concern due to their potential carcinogenicity. The speciation distribution, migration and transformation, enrichment and retention, as well as bioavailability and toxicity of As and Sb are influenced by several environmental processes on mineral surfaces, including adsorption/desorption, coordination/precipitation, and oxidation/reduction. These interfacial reactions are influenced by the crystal facet of minerals with different atomic and electronic structures.

View Article and Find Full Text PDF

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Toxicity of antimony in housefly after whole-life-cycle exposure: Changes in growth, development, redox homeostasis, mitochondrial function, and fecundity.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

The increasing utilization of antimony (Sb) in manufacturing industries has led to the emergence of Sb contamination in the environment as a significant public health concern. To elucidate the toxicity of Sb and its mechanism of action, this study aimed to investigate the adverse effects of Sb on a cosmopolitan insect, housefly (Musca domestica), under a whole life cycle (from embryonic to adult stage) exposure through the examination of a suite of parameters, including biological, physiological, behavioral, and molecular endpoints. A range of Sb concentrations, including moderate contamination (0.

View Article and Find Full Text PDF

[Research progress on metal pollutants inducing neurotoxicity through ferroptosis].

Zhejiang Da Xue Xue Bao Yi Xue Ban

December 2024

Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China.

It has been confirmed that exposure to various metal pollutants can induce neurotoxicity, which is closely associated with the occurrence and development of neurological disorders. Ferroptosis is a form of cell death in response to metal pollutant exposure and it is closely related to oxidative stress, iron metabolism and lipid peroxidation. Recent studies have revealed that ferroptosis plays a significant role in the neurotoxicity induced by metals such as lead, cadmium, manganese, nickel, and antimony.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!