The lack of chemical diversity in light-driven reactions for 3D printing poses challenges in the production of structures with long-term ambient stability, recyclability, and breadth in properties (mechanical, optical, etc.). Herein we expand the scope of photochemistries compatible with 3D printing by introducing onium photocages for the rapid formation of poly(thiourethanes) (PTUs). Efficient nonsensitized visible-light photolysis releases organophosphine and -amine derivatives that catalyze thiol-isocyanate polyaddition reactions with excellent temporal control. Two resin formulations comprising commercial isocyanates and thiols were developed for digital light processing (DLP) 3D printing to showcase the fast production of high-resolution PTU objects with disparate mechanical properties. Onium photocages represent valuable tools to advance light-driven manufacturing of next-generation high-performance sustainable materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c07220DOI Listing

Publication Analysis

Top Keywords

onium photocages
12
photocages visible-light-activated
4
visible-light-activated polythiourethane
4
polythiourethane synthesis
4
printing
4
synthesis printing
4
printing lack
4
lack chemical
4
chemical diversity
4
diversity light-driven
4

Similar Publications

The lack of chemical diversity in light-driven reactions for 3D printing poses challenges in the production of structures with long-term ambient stability, recyclability, and breadth in properties (mechanical, optical, etc.). Herein we expand the scope of photochemistries compatible with 3D printing by introducing onium photocages for the rapid formation of poly(thiourethanes) (PTUs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!