A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spike-Based Neuromorphic Hardware for Dynamic Tactile Perception with a Self-Powered Mechanoreceptor Array. | LitMetric

A self-powered mechanoreceptor array is demonstrated using four mechanoreceptor cells for recognition of dynamic touch gestures. Each cell consists of a triboelectric nanogenerator (TENG) for touch sensing and a bi-stable resistor (biristor) for spike encoding. It produces informative spike signals by sensing a force of an external touch and encoding the force into the number of spikes. An array of the mechanoreceptor cells is utilized to monitor various touch gestures and it successfully generated spike signals corresponding to all the gestures. To validate the practicality of the mechanoreceptor array, a spiking neural network (SNN), highly attractive for power consumption compared to the conventional von Neumann architecture, is used for the identification of touch gestures. The measured spiking signals are reflected as inputs for the SNN simulations. Consequently, touch gestures are classified with a high accuracy rate of 92.5%. The proposed mechanoreceptor array emerges as a promising candidate for a building block of tactile in-sensor computing in the era of the Internet of Things (IoT), due to the low cost and high manufacturability of the TENG. This eliminates the need for a power supply, coupled with the intrinsic high throughput of the Si-based biristor employing complementary metal-oxide-semiconductor (CMOS) technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425894PMC
http://dx.doi.org/10.1002/advs.202402175DOI Listing

Publication Analysis

Top Keywords

mechanoreceptor array
16
touch gestures
16
self-powered mechanoreceptor
8
mechanoreceptor cells
8
spike signals
8
mechanoreceptor
6
touch
6
array
5
gestures
5
spike-based neuromorphic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!