Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quasi-1D chain antiferromagnets with reduced structural dimensionality are a rich playground for investigating novel quantum phenomena. We report the synthesis, crystal structure, and magnetism of two novel quasi-1D antiferromagnets, β-PbCu(TeO)Cl (I) and PbCu(TeO)Br (II). Their magnetic frameworks are constructed via Cu-based quasi-1D [Cu(2)O] zigzag chains with square-planar [Cu(1)OX] (X=Cl or Br) separated among 1D chains. Specific heat measurements show λ peaks at ~9 K and ~19 K for I and II, respectively. Moreover, both broad maximums (χ=90 K for I and 80 K for II) and small kinks (T≈9 K for I and 19 K for II) have been observed in magnetic susceptibility measurements of I and II. Bonner-Fisher model fitting, and theoretical analyses were performed to evaluate the magnetic exchange interactions. Our experimental and theoretical results and structure-properties relationship analysis reveal the coexistence of short- and long-range magnetic ordering from the cooperative effect of 1D [CuO] chains and [CuOX] quadrilateral.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410428 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!