Plant pollen tubes and root hairs typically polarized tip growth. It is well established that calcium ions (Ca2+) play essential roles in maintaining cell polarity and guiding cell growth orientation. Ca2+ signals are encoded by Ca2+ channels and transporters and are decoded by a variety of Ca2+-binding proteins often called Ca2+ sensors, in which calcineurin B-like protein (CBL) proteins function by interacting with and activating a group of kinases and activate CBL-interacting protein kinases (CIPKs). Some CBL-CIPK complexes, such as CBL2/3-CIPK12/19, act as crucial regulators of pollen tube growth. Whether these calcium decoding components regulate the growth of root hairs, another type of plant cell featuring Ca2+-regulated polarized growth, remains unknown. In this study, we identified CIPK13 and CIPK18 as genes specifically expressed in Arabidopsis (Arabidopsis thaliana) root hairs. The cipk13 cipk18 double mutants showed reduced root hair length and lower growth rates. The calcium oscillations at the root hair tip were attenuated in the cipk13 cipk18 mutants as compared to the wild-type plants. Through yeast 2-hybrid screens, CBL2 and CBL3 were identified as interacting with CIPK13 and CIPK18. cbl2 cbl3 displayed a shortened root hair phenotype similar to cipk13 cipk18. This genetic analysis, together with biochemical assays showing activation of CIPK13/18 by CBL2/3, supported the conclusion that CBL2/3 and CIPK13/18 may work as Ca2+-decoding modules in controlling root hair growth. Thus, the findings that CIPK12/19 and CIPK13/18 function in pollen tube and root hair growth, respectively, illustrate a molecular mechanism in which the same CBLs recruit distinct CIPKs in regulating polarized tip growth in different types of plant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!