After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in P release, in contrast with the previous hypothesis that gate opening is the primary event.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260136 | PMC |
http://dx.doi.org/10.1073/pnas.2408156121 | DOI Listing |
mLife
December 2024
State Key Laboratory of Mycology, Institute of Microbiology Chinese Academy of Sciences Beijing China.
Glycosylphosphatidylinositol (GPI) anchoring is one of the conserved posttranslational modifications in eukaryotes that attach proteins to the plasma membrane. In fungi, in addition to plasma membrane GPI-anchored proteins (GPI-APs), some GPI-APs are specifically released from the cell membrane, secreted into the cell wall, and covalently linked to cell wall glucans as GPI-anchored cell wall proteins (GPI-CWPs). However, it remains unclear how fungal cells specifically release GPI-CWPs from their membranes.
View Article and Find Full Text PDFTalanta
December 2024
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China. Electronic address:
Rapid and sensitive detection of phosphate is of great significance for ensuring water safety and preventing eutrophication. In this study, we prepared Au@PATP@Ag NRs core-shell structures using 4-aminothiophenol (PATP) as an internal standard signal molecule to enhance the stability of the SERS signal. Based on the protective effect of ZIF-8 on the internal Au@PATP@Ag NRs and the phosphate-induced decomposition of ZIF-8, a phosphate SERS sensor (Au@PATP@Ag@ZIF-8) with high sensitivity, selectivity and stability was designed.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:
Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFJADA Found Sci
November 2024
GreenMark Biomedical Inc, East Lansing and Ann Arbor, MI.
Background: Noninvasive caries treatments work topically, which may limit efficacy. The authors hypothesized that an alternative approach using mineral-loaded particles designed to target the subsurface of noncavitated caries lesions could be advantageous. This study shows in vitro proof-of-concept.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!