A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Real-Time Grasping Detection Network Architecture for Various Grasping Scenarios. | LitMetric

In the field of robot grasping detection, due to uncertain factors such as different shapes, distinct colors, diverse materials, and various poses, robot grasping has become very challenging. This article introduces a integrated robotic system designed to address the challenge of grasping numerous unknown objects within a scene from a set of α -channel images. We propose a lightweight and object-independent pixel-level generative adaptive residual depthwise separable convolutional neural network (GARDSCN) with an inference speed of around 28 ms, which can be applied to real-time grasping detection. It can effectively deal with the grasping detection of unknown objects with different shapes and poses in various scenes and overcome the limitations of current robot grasping technology. The proposed network achieves 98.88 % grasp detection accuracy on the Cornell dataset and 95.23 % on the Jacquard dataset. To further verify the validity, the grasping experiment is conducted on a physical robot Kinova Gen2, and the grasp success rate is 96.67 % in the single-object scene and 94.10 % in the multiobject cluttered scene.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3419180DOI Listing

Publication Analysis

Top Keywords

grasping detection
16
robot grasping
12
real-time grasping
8
grasping
8
unknown objects
8
detection
5
detection network
4
network architecture
4
architecture grasping
4
grasping scenarios
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!