The decrease in emission efficiency with increasing drive current density, known as 'droop', of -plane wurtzite InGaN/GaN quantum wells presently limits the use of light-emitting diodes based on them for high brightness lighting applications. InGaN/GaN quantum wells grown in the alternative zincblende phase are free of the strong polarisation fields that exacerbate droop and so were investigated by excitation-dependent photoluminescence and photoreflectance studies. Polarisation-resolved measurements revealed that for all excitation densities studied the emission from such samples largely originates from similar microstructures or combinations of microstructures that form within the quantum well layers. Emission efficiency varies significantly with excitation at 10 K showing that non-radiative recombination processes are important even at low temperature. The onset of efficiency droop, as determined by photomodulated reflection measurements, occurred at a carrier density of around 1.2 × 10 cm - an order of magnitude greater than the value reported for a reference wurtzite quantum well sample using the same method. The high carrier density droop onset combined with the much shorter carrier lifetime within zincblende InGaN/GaN quantum wells indicate they have the potential to effectively delay efficiency droop when used in GaN based light-emitting diodes. However, the material quality of the quantum well layers need to be improved by preventing the formation of microstructures within these layers, and the importance of the role played by non-radiative centres in the QW layer needs to be elucidated, to fully realise the material's potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr00812j | DOI Listing |
Nanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland.
We compare the optical properties of four diode samples differing by built-in field direction and width of the InGaN quantum well in the active layer: two diodes with standard layer sequences and 2.6 and 15 nm well widths and two diodes with inverted layer ordering (due to the tunnel junction grown before the structure) also with 2.6 and 15 nm widths.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Physics and Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Korea.
One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Physics and Electronics, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan.
Light-emitting diodes (LEDs) are widely used as next-generation light sources because of their various advantages. However, their luminous efficiency is remarkably low at the green-emission wavelength. The luminous efficiencies of InGaN/GaN quantum wells (QWs) significantly decrease with increasing indium content in the green wavelength region, mainly owing to the quantum-confined Stark effect (QCSE).
View Article and Find Full Text PDFMicro/mini light emitting diodes (LEDs) based on AlInGaN material system have vast potential in display applications. Nevertheless, the low internal quantum efficiency (IQE) of InGaN-based red LED limits its development and application. In the epitaxial structure of our designed red LED, double V-pits layers were used as strain relief layers to reduce compressive strain and improve the IQE of the active layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!