Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes. Here, we addressed this drawback by developing a polyscopoletin-based MIP that recognizes recombinant proteins via imprinting of the widely used Strep-tag II affinity peptide (Strep-MIP). Electrochemistry, surface-sensitive IR spectroscopy, and molecular dynamics simulations were employed to ensure an utmost control of the Strep-MIP electrosynthesis. The functionality of this novel platform was verified with two Strep-tagged enzymes: an O-tolerant [NiFe]-hydrogenase, and an alkaline phosphatase. The enzymes preserved their biocatalytic activities after multiple utilization confirming the efficiency of Strep-MIP as a general biocompatible platform to confine recombinant proteins for exploitation in biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408979DOI Listing

Publication Analysis

Top Keywords

recombinant proteins
8
strep-tag imprinted
4
imprinted polymer
4
polymer platform
4
platform heterogenous
4
heterogenous bioelectrocatalysis
4
bioelectrocatalysis molecularly
4
molecularly imprinted
4
imprinted polymers
4
polymers mips
4

Similar Publications

Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants.

View Article and Find Full Text PDF

Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus.

Microb Cell Fact

January 2025

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.

View Article and Find Full Text PDF

Background: While vaccination remains crucial in mitigating the impact of the COVID-19 pandemic, several ocular adverse events has been reported, including Acute Zonal Occult Outer Retinopathy (AZOOR) complex.

Case Presentation: A 31-year-old female presented declined best corrected visual acuity (BCVA) and flashes in both eyes three days following second recombinant mRNA COVID-19 vaccine (Moderna). Fundus autofluorescence (FAF) illustrated speckled hyper-AF lesions surrounding right eye torpedo maculopathy site and hyper-AF lesions in the left macula.

View Article and Find Full Text PDF

Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.

Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.

View Article and Find Full Text PDF

Neutralizing antibody immune correlates in COVAIL trial recipients of an mRNA second COVID-19 vaccine boost.

Nat Commun

January 2025

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Neutralizing antibody titer has been a surrogate endpoint for guiding COVID-19 vaccine approval and use, although the pandemic's evolution and the introduction of variant-adapted vaccine boosters raise questions as to this surrogate's contemporary performance. For 985 recipients of an mRNA second bivalent or monovalent booster containing various Spike inserts [Prototype (Ancestral), Beta, Delta, and/or Omicron BA.1 or BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!