Skp1 is a conserved structural component of the meiotic synaptonemal complex.

bioRxiv

School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States.

Published: June 2024

The synaptonemal complex (SC) is a meiotic interface that assembles between parental chromosomes and is essential for the formation of gametes. While the dimensions and ultrastructure of the SC are conserved across eukaryotes, its protein components are highly divergent. Recently, an unexpected component of the SC has been described in the nematode : the Skp1-related proteins SKR-1/2, which are components of the Skp1, Cullin, F-box (SCF) ubiquitin ligase. Here, we find that the role of SKR-1 in the SC is conserved in nematodes. The Skp1 ortholog, Ppa-SKR-1, colocalizes with other SC proteins throughout meiotic prophase, where it occupies the middle of the SC. Like in the dimerization interface of Ppa-SKR-1 is required for its SC function. A dimerization mutant, , fails to assemble SC and is almost completely sterile. Interestingly, the evolutionary trajectory of SKR-1 contrasts with other SC proteins. Unlike most SC proteins, SKR-1 is highly conserved in nematodes. Our results suggest that the structural role of SKR-1 in the SC has been conserved since the common ancestor of and and that rapidly evolving SC proteins have maintained the ability to interact with SKR-1 for at least 100 million years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230192PMC
http://dx.doi.org/10.1101/2024.06.24.600447DOI Listing

Publication Analysis

Top Keywords

synaptonemal complex
8
role skr-1
8
skr-1 conserved
8
conserved nematodes
8
proteins
5
skr-1
5
skp1 conserved
4
conserved structural
4
structural component
4
component meiotic
4

Similar Publications

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on spermatogenesis in Todarodes pacificus, identifying four stages: spermatogonium, spermatocyte, spermatid, and mature sperm.
  • - Key characteristics of each stage are noted, including changes in karyoplasm and the development of structures such as mitochondria and proacrosomal vesicles during spermiogenesis.
  • - Mature sperm are detailed with a specific nucleus size, irregular karyoplasm shape, and distinct acrosome and flagellum structures essential for function.
View Article and Find Full Text PDF

Among eukaryotes, there are many examples of partial genome elimination during ontogenesis. A striking example of this phenomenon is the loss of entire avian chromosomes during meiosis, called a germline-restricted chromosome (GRC). The GRC is absent in somatic tissues but present in germ cells.

View Article and Find Full Text PDF

Immunohistochemical Characterization of Spermatogenesis in the Ascidian .

Cells

November 2024

Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan.

Animals show diverse processes of gametogenesis in the evolutionary pathway. Here, we characterized the spermatogenic cells in the testis of the marine invertebrate sperm differentiate in a non-cystic type of testis, comprising many follicles with various sizes and stages of spermatogenic cells. In the space among follicles, we observed free cells that were recognized by antibody against Müllerian inhibiting substance, a marker for vertebrate Sertoli cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!