Optogenetics has been a powerful scientific tool for two decades, yet its integration with non-human primate (NHP) electrophysiology has been limited due to several technical challenges. These include a lack of electrode arrays capable of supporting large-scale and long-term optical access, inaccessible viral vector delivery methods for transfection of large regions of cortex, a paucity of hardware designed for large-scale patterned cortical illumination, and inflexible designs for multi-modal experimentation. To address these gaps, we introduce a highly accessible platform integrating optogenetics and electrophysiology for behavioral and neural modulation with neurophysiological recording in NHPs. We employed this platform in two rhesus macaques and showcased its capability of optogenetically disrupting reaches, while simultaneously monitoring ongoing electrocorticography activity underlying the stimulation-induced behavioral changes. The platform exhibits long-term stability and functionality, thereby facilitating large-scale electrophysiology, optical imaging, and optogenetics over months, which is crucial for translationally relevant multi-modal studies of neurological and neuropsychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230395 | PMC |
http://dx.doi.org/10.1101/2024.06.25.600719 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
The molecule-electrode interface can regulate both the efficiency and pathways of electron transport through single-molecule junctions (SMJs). The electromechanics of the interface has proven crucial in exposing the underlying mechanisms of electron transmission through SMJs, providing a theoretical base and practical guidance for designing and constructing functional molecular devices. Here we encompass several currently developed methodologies for investigating the electromechanics of molecule-electrode interface and provide an account of their application in elucidating the effects of the molecule-electrode interface on electron transport properties of SMJs.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Surgery, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium; Division of Laryngology and Bronchoesophagology, Department of Otolaryngology Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium; Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France; Department of Otolaryngology, Elsan Hospital, Paris, France. Electronic address:
Background: Voice analysis has emerged as a potential biomarker for mood state detection and monitoring in bipolar disorder (BD). The systematic review aimed to summarize the evidence for voice analysis applications in BD, examining (1) the predictive validity of voice quality outcomes for mood state detection, and (2) the correlation between voice parameters and clinical symptom scales.
Methods: A PubMed, Scopus, and Cochrane Library search was carried out by two investigators for publications investigating voice quality in BD according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.
J Formos Med Assoc
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:
Controlling hypertension has become an important issue in the elderly population in whom neurological comorbidities are highly prevalent. Most of the large-scale trials focusing on hypertension management in older populations have excluded patients with comorbid neurological disorders. However, this population requires special considerations, as the benefits of antihypertensive agents are mostly uncertain and there is a higher risk of adverse events.
View Article and Find Full Text PDFActa Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFCell Host Microbe
January 2025
Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!