Background: Parasitic flatworms of the genus cause schistosomiasis, which affects over 230 million people. causes the urogenital form of schistosomiasis (UGS), which can lead to hematuria, fibrosis, and increased risk of secondary infections by bacteria or viruses. UGS is also linked to bladder cancer. To understand the bladder pathology during infection, our group previously developed a mouse model that involves the injection of eggs into the bladder wall. Using this model, we studied changes in epigenetics profile, as well as changes in gene and protein expression in the host bladder tissues. In the current study, we expand upon this work by examining the expression level of both host and parasite genes using RNA sequencing (RNA-seq) in the mouse bladder wall injection model of infection.
Methods: We used a mouse model of infection in which parasite eggs or vehicle control were injected into the bladder walls of female BALB/c mice. RNA-seq was performed on the RNA isolated from the bladders four days after bladder wall injection.
Results/conclusions: RNA-seq analysis of egg- and vehicle control-injected bladders revealed the differential expression of 1025 mouse genes in the egg-injected bladders, including genes associated with cellular infiltration, immune cell chemotaxis, cytokine signaling, and inflammation We also observed the upregulation of immune checkpoint-related genes, which suggests that while the infection causes an inflammatory response, it also dampens the response to avoid excessive inflammation-related damage to the host. Identifying these changes in host signaling and immune responses improves our understanding of the infection and how it may contribute to the development of bladder cancer. Analysis of the differential gene expression of the parasite eggs between bladder-injected versus uninjected eggs revealed 119 genes associated with transcription, intracellular signaling, and metabolism. The analysis of the parasite genes also revealed fewer transcript reads compared to that found in the analysis of mouse genes, highlighting the challenges of studying parasite egg biology in the mouse model of infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230422 | PMC |
http://dx.doi.org/10.1101/2024.06.29.601185 | DOI Listing |
Stem Cells
January 2025
Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.
Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.
View Article and Find Full Text PDFVirol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada.
As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!