Designing effective childhood vaccination counseling guidelines, public health campaigns, and school-entry mandates requires a nuanced understanding of the information ecology in which parents make vaccination decisions. However, evidence is lacking on how best to "catch the signal" about the public's attitudes, beliefs, and misperceptions. In this study, we characterize public sentiment and discourse about vaccinating children against SARS-CoV-2 with mRNA vaccines to identify prevalent concerns about the vaccine and to understand anti-vaccine rhetorical strategies. We applied computational topic modeling to 149 897 comments submitted to regulations.gov in October 2021 and February 2022 regarding the Food and Drug Administration's Vaccines and Related Biological Products Advisory Committee's emergency use authorization of the COVID-19 vaccines for children. We used a latent Dirichlet allocation topic modeling algorithm to generate topics and then used iterative thematic and discursive analysis to identify relevant domains, themes, and rhetorical strategies. Three domains emerged: (1) specific concerns about the COVID-19 vaccines; (2) foundational beliefs shaping vaccine attitudes; and (3) rhetorical strategies deployed in anti-vaccine arguments. Computational social listening approaches can contribute to misinformation surveillance and evidence-based guidelines for vaccine counseling and public health promotion campaigns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229700 | PMC |
http://dx.doi.org/10.1093/haschl/qxae082 | DOI Listing |
Health Promot Pract
January 2025
University of Nebraska Medical Center, Omaha, NE, USA.
The meat processing industry was significantly impacted by the COVID-19 pandemic. Deemed essential, the meat processing workforce faced the risk of exposure to the SARS-CoV-2 virus. Along with other essential workforces, meat processing workers were prioritized in the national approach to receive COVID-19 vaccines by the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices.
View Article and Find Full Text PDFVet Res Forum
December 2024
MD Student, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster.
View Article and Find Full Text PDFHeliyon
July 2024
Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil.
Since December 2019, a new form of Severe Acute Respiratory Syndrome (SARS) has emerged worldwide, caused by SARS coronavirus 2 (SARS-CoV-2). This disease was called COVID-19 and was declared a pandemic by the World Health Organization in March 2020. Symptoms can vary from a common cold to severe pneumonia, hypoxemia, respiratory distress, and death.
View Article and Find Full Text PDFNarra J
December 2024
Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
The waning immunity following the COVID-19 vaccination become a significant concern and the immunological dynamics of vaccine-induced antibodies after vaccination need to be explored. The aim of this study was to compare anti-SARS-CoV-2 receptor-binding domain (RBD) antibody levels before and after a booster dose with heterologous COVID-19 vaccine and to identify factors influencing the levels after receiving the booster dose. A cross-sectional study was conducted in which individuals who received primary doses of CoronaVac and a booster dose with an mRNA-based vaccine were recruited using a purposive sampling technique.
View Article and Find Full Text PDFNarra J
December 2024
Research Center for Pre-Clinical and Clinical Research, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia.
The coronavirus disease 2019 (COVID-19) pandemic has encouraged global vaccine research, yet vaccine effectiveness in the elderly remains a concern due to immunosenescence. The aim of this study was to compare the cytokine response elicited by an inactivated virus-based COVID-19 vaccine between elderly and young adults, focusing on key cytokines involved in cellular and humoral immunity: tumor necrosis factor-alpha (TNF-α), interleukin (IL)-2, IL-6, IL-10, and interferon-gamma (IFN-γ). A cross-sectional study was conducted in the Jakarta-Bogor region of Indonesia from January 2023 to December 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!