Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study aimed to investigate the therapeutic effects and mechanisms of Yishen Jiangzhuo decoction (YSJZD) in a mouse model of cisplatin-induced acute kidney injury (AKI). The mice were divided into the NC, cisplatin and cisplatin + YSJZD groups. A concentration-dependent effect of YSJZD on cisplatin-induced AKI was observed and the optimal concentration for intervention was calculated. Changes in blood urea nitrogen and serum creatinine levels combined with hematoxylin and eosin and periodic acid-Schiff staining and transmission electron microscopy observations indicated that YSJZD enhanced renal function, reduced pathological injury and protected renal tubular epithelial cells in cisplatin-induced AKI mice. The results of the transcriptomic and enrichment analyses showed that the mechanisms of YSJZD may be associated with inflammation, oxidation, apoptosis and the TNF signal pathway. Immunofluorescence, oxidative stress index, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and western blotting revealed that YSJZD downregulated apoptosis in the renal tissues of AKI mice and further decreased the expression levels of p-p65, p-p38 MAPK, TNF-α, cleaved-caspase-3 and malondialdehyde, while increasing the levels of NAD-dependent protein deacetylase sirtuin-3, glutathione and superoxide dismutase. Overall, the results showed that YSJZD could effectively abrogate cisplatin-induced AKI in mice through mechanisms primarily related to its anti-inflammatory, antioxidative and antiapoptotic effects by inhibited the TNF signal pathway. YSJZD warrants further investigation as a clinical empirical prescription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228562 | PMC |
http://dx.doi.org/10.3892/etm.2024.12620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!