A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Blood-Catalyzed Polymerization Creates Conductive Polymer in Live Zebrafish. | LitMetric

Conducting polymers are of great interest in bioimaging, bio-interfaces, and bioelectronics for their biocompatibility and the unique combination of optical, electrical, and mechanical properties. They are typically prepared outside through traditional organic synthesis and delivered into the biological systems. The ability to call for the polymerization ingredients available inside the living systems to generate conducting polymers will offer new venues in future biomedical applications. This study is the first report of synthesis of an n-doped conducting polymer (n-PBDF) within live zebrafish embryos, achieved through whole blood catalyzed polymerization of 3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione (BDF). Prior to this, the efficacy of such a polymerization was rigorously established through a sequence of experiments involving Hemin, Hemoproteins (Hemoglobin, Myoglobin, and Cytochrome C), red blood cells, and the whole blood. Ultimately, formed n-PBDF within cultured primary neurons demonstrated enhanced bio-interfaces and led to more effective light-induced neural activation than the prefabricated polymer. This underscores the potential advantages of synthesizing conducting polymers directly in living systems for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230466PMC
http://dx.doi.org/10.21203/rs.3.rs-3602290/v1DOI Listing

Publication Analysis

Top Keywords

conducting polymers
12
live zebrafish
8
living systems
8
biomedical applications
8
blood-catalyzed polymerization
4
polymerization creates
4
creates conductive
4
conductive polymer
4
polymer live
4
conducting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!