Although 10-Hz repetitive transcranial magnetic stimulation (rTMS) is an FDA-approved treatment for depression, we have yet to fully understand the mechanism through which rTMS induces therapeutic and durable changes in the brain. Two competing theories have emerged suggesting that 10-Hz rTMS induces N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP), or alternatively, removal of inhibitory gamma-aminobutyric acid receptors (GABARs). We examined these two proposed mechanisms of action in the human motor cortex in a double-blind, randomized, four-arm crossover study in healthy subjects. We tested motor-evoked potentials (MEPs) before and after 10-Hz rTMS in the presence of four drugs separated by 1-week each: placebo, NMDAR partial agonist d-cycloserine (DCS 100mg), DCS 100mg + NMDAR partial antagonist dextromethorphan (DMO 150mg; designed to "knock down" DCS-mediated facilitation), and GABAR agonist lorazepam (LZP 2.5mg). NMDAR agonism by DCS enhanced rTMS-induced cortical excitability more than placebo. This enhancement was blocked by combining DCS with NMDAR antagonist, DMO. If GABARs are removed by rTMS, GABAR agonism via LZP should lack its inhibitory effect yielding higher post/pre MEPs. However, MEPs were reduced after rTMS indicating stability of GABAR numbers. These data suggest that 10-Hz rTMS facilitation in the healthy motor cortex may enact change in the brain through NMDAR-mediated LTP-like mechanisms rather than through GABAergic reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230474 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-4630964/v1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!